CNO Abundance Analysis in Nearby Galaxies (UV–Optical)

C. BRACCI, E. LENTINI, L. ROOS, G. VALÉ ARTEAGA

Supervisor: Danielle BERG

Introduction

- Dwarf Galaxy with Wolf-Rayet (WR) stars
- Nitrogen-enriched galaxy
- Part of the CLASSY survey

Redshift	0.0054	
log M₊	8.74 M _□	
log SFR	-0.75 yr-1	
Metallicity	0.10 Z/Z	

Mrk 996 - credit: CLASSY

The Spectra

UV-Spectrum

Optical Spectrum

- Archival + new HST/Cosmic Origins Spectrograph (COS) datasets
- Spectra are coadded, then binned by the largest common native resolution of the COS FUV+NUV instruments

Methods: Line fitting

O1 Uv lines: O III], NIII], CIII]
Optical lines: HI, [OIII], [NII], [SII], [OII]

O2 Emission-lines were fit using the LMfit package.

O3 From the fit, we measured the lines' fluxes and their error.

Thanks to Zorayda for the fluxes!

Methods: PyNeb

PyNeb (Luridiana+15) is a package for the analysis of emission lines.

01

Apply the **4-zone**ionization model to our
data

02

Check how much ratios

change with temperature

and density

03

Starting from the most stable elements, compute **temperature**, **density** and **abundances** for each zone

	Low ionisation	Intermediate ionisation	High ionisation
temperature	[O II] T(OII)=T(OIII)0.7 + 3000	[S III] T(SII)=T(OIII)0.83 +1700	O III] PyNeb
Electron	[S II]	C III]	
density	PyNeb	PyNeb	
abundances	[O II]	C III]	Optical [O III]
	PyNeb	PyNeb	PyNeb
	[N II]	[N III]	UV O III]
	PyNeb	PyNeb	PyNeb

03

Starting from the most stable elements, compute **temperature**, **density** and **abundances** for each zone

$$LOH = 12 + \left(\frac{O^+}{H^+} + \frac{O^{+2}}{H^+}\right)$$

$$\frac{N^+}{O^+} = \frac{N^+/H^+}{O^+/H^+} ICF(N^+/O^+)$$

$$\frac{N^{+2}}{O^{+2}} = \frac{N^{+2}/H^{+}}{O^{+2}/H^{+}}ICF(N^{+2}/O^{+2})$$

Results: N/O-O/H scatter plot

$$12 + \log(O/H) = 7.65 \pm 0.02$$

$$log(N^{+}/O^{+}) = -0.95 \pm 0.04$$

$$log(N^{+2}/O^{+2}) = -0.15 \pm 0.06$$

Results: N/O-O/H scatter plot

$$12 + \log(O/H) = 7.65 \pm 0.02$$

$$log(N^{+}/O^{+}) = -0.95 \pm 0.04$$

Results: C/O-O/H scatter plot

$$12 + \log(O/H) = 7.65 \pm 0.02$$

$$log(C/O) = -0.11 \pm 0.14$$

Results: BPT diagrams

Conclusions

- ★ Enriched Nitrogen Galaxy.
- ★ Snapshot of galaxy between WR and SN.
- ★ High ionization zone Nitrogen can be explained this way.
- ★ High CO abundance.
- ★ BPT shows starforming galaxy.

