Project 9: **Numerical Simulations Using** the RAMSES and AREPO Codes

Vasanth Kashyap, Aurelien Piluso, Hans-Christian Poosch, Lori Porter, Laurin Soding Supervisors: Simon Glover and Eva Ntormousi

What We've Done:

★ Simulation:

- Deep dive into MHD equations and solvers
- Simple simulations using RAMSES (1D, 3D)
- Creation of own simulation in RAMSES 3D Sedov explosion

★ Data processing :

- General data analysis of AREPO simulations of galaxy
- Precise data extraction of relevant parameters :
 - Selection of SN bubbles
 - Extraction

Supernova shock

- 1. Sudden injection of pressure
- 2. Accelerating material outwards
 - → First ballistic, then supersonic velocities (Sedov-Taylor-Phase)
- 3. In spherically symmetric setting: No smooth transition possible between super- and sub-sonic solutions of hydrodynamical equations
- 4. Conservation of mass at the shock front: $ho_{
 m pre} v_{
 m pre} =
 ho_{
 m post} v_{
 m post}$

If
$$ho_{
m post}>
ho_{
m pre}$$
 , then $v_{
m post}=v_{
m pre}rac{
ho_{
m pre}}{
ho_{
m post}}< v_{
m pre}$

- → The flow is compressed and slowed down (in shock rest-frame)!
- → The shock converts bulk kinetic energy into heat!

$$R(t) = 2 \text{ pc} \cdot \left(\frac{E_{\text{SN}}}{1E51 \text{ ergs}}\right)^{1/5} \cdot \left(\frac{n_{\text{ISM}}}{100 \text{ cm}^{-3}}\right)^{1/5} \cdot \left(\frac{t}{1 \text{ kyr}}\right)^{2/5}$$
Kim, C.-G. & Ostriker, E. C. 2015, ApJ, 802, 99

RAMSES code

AMR (Adaptive Mesh Refinement): efficient multi-scale resolution

• <u>Finite-Volume</u>: Conservation of mass, momentum, energy.

<u>Multi-Physics</u>: Hydrodynamics, MHD, Self-Gravity, Radiative Transfer.

- Numerical Strengths: High-order schemes, Hierarchical time-stepping, Massively Parallel.
- <u>Hypotheses</u>: Fluid approximation, Reliance on sub-grid physics, Ideal MHD (often), RT simplifications.

For detailed information, please refer to Simon Glover's lecture

Hands-on project (part): Use of RAMSES in simple cases in 1D and 3D

Supernova with an energy of 1e51 ergs

Density of surrounding ISM: 100 H/cm³

Initial size of pressurized region: 0.55pc

Supernova with an energy of 100*1e51 ergs

Supernova with an energy of 1e51 ergs and a magnetic field

SN bubble no longer spherical -> ellipsoid

Minimum Density Finder

- Use some of your chefs skills to slice the galaxy into cubes of 2 kpc
- 2. Get the particles with the least density
 - a. Bottom 5% of the density distribution for stability
- Calculate the mean coordinates of these points
 - a. Weighted by (density)⁻¹
- Use this as center for the Bubble Finder

Bubble Finder - Selection Criteria

- Strong gradient in the Radial Velocity as we move from inside to the outside of the bubble
 - Require a steep radial velocity gradient and density profile

Caveats

- Resolution limited to Bubbles of size > 150 pc
- Number of bubbles we find is subject to the chefs chopping

Bubble Finder - Selection Criteria

- Strong gradient in the Radial Velocity as we move from inside to the outside of the bubble
 - Require a steep radial velocity gradient and density profile

Caveats

- Resolution limited to Bubbles of size > 150 pc
- Number of bubbles we find is subject to the chefs chopping

Total number of bubble candidates found (so far) in 1 snapshot:

15... ish

Bubble Finder - Selection Criteria

Caveats

- Spherical geometry holds for an isolated explosion
- Supernovae in ISM are far from isolated
- There is only so much we can do using just derivatives of one quantity.
- Wrong detections are usual

