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2. What have we learned from resolved feedback studies so far?
3. Can we learn something about the early Universe from local 

studies?
4. Stellar population synthesis & the IMF
5. Connecting the local to the distant Universe
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Feedback = deposition of energy (E), momentum (p), and metals (X) 
into the surrounding medium  by massive (M > 8 M


) stars 

source

E,p,X

E,p,XE,p,X

E,p,X



Stellar feedback is a multi-scale, multi-temporal, multi-phase, and 
multi-wavelength phenomenon
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Stellar feedback is an umbrella term  

supernovae

proto-
stellar 

jets
outflows

ionisation

stellar 
winds

radiation 
pressure

see Krumholz+14, Geen+23 (incl. McLeod), Chevance, 
Krumholz, McLeod+23,

 Lucas+20, Haid+18

3 Myr
Onset of star 
formation

pre-supernova 
feedback
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Stellar feedback affects the environment from sub-pc to kpc scales 

few pc 10s-100s pc kpc

McLeod+16b

Starburst-driven wind 
is shutting down star 

formation

Bolatto+13

Molecular clouds 
evaporate faster when 
exposed to more photons

Ginsburg+17
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McLeod et al. 2015

Hopkins+11

ESA/NASA

Not many stars are formed Almost all the gas is 
transformed into stars

SIMULATIONS

But: what is the right feedback recipe?
Need to know about the stellar 

populations doing the feedback

Without stellar feedback the simulated Universe would not look 
like the observed.



Today’s program 

2. What have we learned from resolved feedback studies so far?
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We have quantified the photoevaporative effect of ionizing feedback

Pillars in M16

McLeod+16; ESO press release eso1639b, credit ESO/A. McLeod

50.98
49.87 

49.4948.
02

49.02

Pillar in NGC 3603

Pillars in Carina

How? By measure the photo-evaporation rate for pillars in 
different types of environments
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… but: this is only ionizing feedback on small scales in the Milky Way…
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➔ Exploit nearby (resolved), metal-poor galaxies to understand feedback at high 
redshifts (Lopez+14, McLeod+19, McLeod+22, McLeod+24, Rowland+24)
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PHANGS - 19 nearby galaxies

Use these to explore relations between feedback and 
e.g. metallicity



LMC N44 LMC N180

McLeod+18b

[SII]6717 
Hα 
[OIII]5007

VLT/MUSE observations
Simultaneous characterization of individual feedback-driving stars 

and resolved feedback-driven gas

> 60 O & WR stars
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Feedback in massive star-forming regions in the LMC: 
quantify different feedback mechanisms

McLeod et al., 2019b

Which feedback mechanisms are dominant?

➔ The HII region expansion is mainly driven by stellar winds and the warm, ionized gas

• Direct radiation pressure
• Pressure of ionized gas
• Pressure from stellar 

winds

These are only a handful  of regions in the LMC. How does this depend on the 
environment? E.g. metallicity and location within the host galaxy?

SMC: Violet Brace 
MSc thesis 

MW: Amber Sedgley 
MSc thesis 

➔ The HII region expansion is mainly driven by stellar winds and the warm, ionized gas
(see also Lopez+14)
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Why the LMC (SMC) is not the final frontier of feedback studies 

Credit: C. Fairbairn 

Instead of tens of regions with this level of detail, need hundreds to 
thousands to statistically characterize feedback

Imaging 30 Doradus alone would 
require > 200 hours of MUSE time

~ 40 arcminutes

Also, this does not sample the environment of different host galaxies

Solution: survey nearby galaxies (beyond the LMC)
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Exploring the very low metallicity regime

Dwarf starburst galaxies 

Rowland, McLeod+24
(see also Marasco+23)

Anna McLeod, Durham Uni
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Let’s take a moment to digest

• Stellar feedback is an essential component in regulating star 
formation and galaxy evolution

• This inherently becomes a cosmic time issue
• To understand the interdependence of the ISM conditions and 

feedback we must know about the stars
• Stars & star clusters in the early Universe are unresolved



Today’s program 

3. Can we learn something about the early Universe from local 
studies?



Can we learn something (about the 
high-z Universe) from resolved 
massive stars (clusters) in the 

nearby Universe?



Can we learn something (about the 
high-z Universe) from resolved 
massive stars (clusters) in the 

nearby Universe?

➜ use local analogs of high-z galaxies



Do local analogs of high-z galaxies exist?



Do local analogs of high-z galaxies exist?
Properties change as a function of redshift, for example:



Do local analogs of high-z galaxies exist?

Tasca+14

Bian+20

z-evolution of SFR – stellar 
mass relation

z-evolution of BPT loci

Properties change as a function of redshift, for example:



Do local analogs of high-z galaxies exist?

Tasca+14

Bian+20

z-evolution of SFR – stellar 
mass relation

z-evolution of BPT loci

? ?

Properties change as a function of redshift, for example:
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Do local analogs of high-z galaxies exist?

Maybe they do, but:
• Local analogs typically have higher metallicities
• Other factors to consider

• E.g., uncertainty of escape fraction evolution with redshift
• E.g., dynamical states might have been different at high z

NGC 5253
M* ~ 108 M⦿

SFR ~ 1 M⦿ /yr
AV ~ 8 – 25 mag
Z ~ 0.2 – 0.3 Z ⦿

Bisigello+23

Bisigello+23

Kobulnicky+97
Masters et al.
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We need to understand stars before we understand feedback at any scale.
(see Geen+23)

Assuming that we understand stars, how do we synthesize a stellar population?

Curtesy of Elizabeth Stanway (U Warwick)
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• Composite spectra
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Beatrice Tinsley

The concept of SPS codes can be traced back to New Zealand/American astrophysicist 
Beatrice M Tinsley.

1967 – PhD Thesis: 
Evolution of Galaxies 
and its Significance 
for Cosmology

ApJ, 151, 547 (1968)
Image source: wikimedia
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star formation history



Full SED modeling
Combining SSPs with:

• star formation history
• metallicity history
• nebular gas 
• dust absorption and emission



Full SED modeling
Combining SSPs with:

• star formation history
• metallicity history
• nebular gas 
• dust absorption and emission

produces a full synthetic spectral energy 
distribution (SED)



Full SED modeling
Combining SSPs with:

• star formation history
• metallicity history
• nebular gas 
• dust absorption and emission

produces a full synthetic spectral energy 
distribution (SED)

(image: Conroy 2014)



Full SED modeling
Combining SSPs with:

• star formation history
• metallicity history
• nebular gas 
• dust absorption and emission

produces a full synthetic spectral energy 
distribution (SED)

➔ infer key physical properties () age, star 
formation rate, metallicity, dust content, 
and stellar mass 
of unresolved stellar populations

(image: Conroy 2014)
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Into the 2000s

Leading evolutionary SPS codes (with spectroscopy) include 

• GalaxEv (Bruzual and Charlot 2003, CB16)

• Starburst99 (Leitherer+) 

• Flexible Stellar Population Synthesis (FSPS, Conroy+)

• the Maraston 2005, 2011 models

All of these use primarily isolated, single star evolution.



Next: 3 key ingredients to SPS models

1. Binaries
2. Nebular gas & dust
3. IMF
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Binaries in the Universe

• the fraction of stars in binary systems increases 
with stellar mass

• binary interactions (mass transfer, mergers, 
etc.) affect stellar evolution

Primary Mass / Msun

“The Close Binary Fraction of Solar-type Stars Is 
Strongly Anticorrelated with Metallicity”

Moe+19

Moe & di Stefano 17
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The need for binary models

• The spectra of young stellar populations are dominated by the 
most massive stars (feedback!)

• 70% of massive stars interact with a binary partner in their 
evolutionary lifetime

• The effects of these interactions are strongest at low metallicities 
(early Universe!): stars are hotter

➜ We cannot ignore binaries in emission line galaxies
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The need for binary models

What this means in practice:

Binary interactions
(mass transfer, common 

envelope phases, mergers)

Hotter, more luminous, 
longer-lived stars

Ages: overestimated 
SFR: underestimated 

Stellar masses & 
metallicities: misestimated

Young, massive 
stars

Blue part 
of SED

Luminous, older 
binaries
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• Composite spectra
• Photometric colours
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diagrams
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Binary Stellar 
evolution tracks 

(function of mass, 
period, mass ratio, Z)

Tests for 
supernova 
outcomes

Rejuvenation and 
mixing

Stripping and 
CEE

Binary parameter 
evolution (P,a)

Initial period and 
mass ratio 

distributions

Identify GRBs, accreting 
compact objects, 

compact object mergers

Stripped and He 
star 

atmospheres

• GRB + GW chirp rates
• XRB number counts
• SN distributions/kicks
• Remnant masses

• Bluer, harder spectra
• Stronger stellar 

absorption lines



Binary population synthesis
• Binary PopSynth Codes:

• BSE (Hurley+)
• StarTrack (Belcyznski+)
• SEVN (Mapelli+)
• POSYDON (Fragos+)

• Binary Spectral PopSynth Codes:

Eldridge, Stanway+
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Nebular gas and dust
To fit real stellar populations gas and dust must also be 
considered (feedback!)

 absorbs away blue light, produces nebular continuum and line 
emission (gas), far infrared emission (dust)

 key parameters: gas density (ne), ionizing spectrum, gas 
composition, ionization parameter (nion per gas particle), dust 
extinction curve (kl), dust emission curve)

Specialist radiative transfer codes (e.g. Cloudy) must be used
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Mass functions

There are a range of mass functions to consider in 
population synthesis:

• Stellar IMF (MF at time of starburst)
• Present Day Stellar Mass Function (MF after accounting for 

stellar evolution)
• Field star IMF (MF after accounting for cluster dissolution and 

population mixing)

• Composite IMFs, e.g. galaxy-wide IMF, Salpeter IMF
• stellar cluster mass functions + cluster stellar IMFs
• e.g. IGIMF theory (Kroupa & Weidner 2003)



Initial mass functions

We now know that the Salpeter law 
(single powerlaw) overpredicts the 
number of low mass stars and needs 
a cut-off (e.g. Chabrier 2003, Kroupa 
2001)

(See e.g. Hopkins, Dawes Review, 2018)

When a starburst occurs, stars of a wide range of masses are formed.



Initial mass functions

Mass (Msun)

0.08 1 10 100

(See e.g. Stanway+19)

What is the true slope?

(will affect ionizing fluxes)
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Initial mass functions

Mass (Msun)

0.08 1 10 100

Is the IMF 
sampled 
stochastically?

(See e.g. Stanway+19)

(will affect ionizing fluxes)



Initial mass functions

Mass (Msun)

0.08 1 10 100

What about 
low mass 
stars?

(will affect mass estimates)

(See e.g. Stanway+19)
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Initial mass functions: universality?

“Studies comparing these [Kroupa, Chabrier] models have generally found them to be 
similarly compatible with observations, as well as other parameterizations […]. However, 
it is not possible to draw a single curve through all data points […] that avoids tension 
with all measurements; […] 
The strong hypothesis of a true IMF universality is unlikely.



Let’s take a moment to digest

So, you’re using an SSP? You should ask what it’s using for:

• Stellar evolution models
• Stellar atmosphere models
• Initial mass function and model mass range
• Initial composition/metallicity
• Binary parameters
• Nebular gas or dust assumptions



Today’s program 

5. Connecting the local to the distant Universe
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SPS models need validation

Age
Metallicity
SFR
SFH

Age
Metallicity
SFR
SFH

Degeneracies!
(Pforr+12, Maraston+10)

BPASS+hoki 
(Stevance, Eldridge, Stanway)

➔Validate via apples-to-apples comparison 
resolved + integrated observations 

vs 
resolved + integrated models 

at known O/H and spatial variations

“Knowing what goes in to trust what comes out”
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1-10s pc scales 100 pc scales kpc scales

Individual stars and HII regions
Aim:
- Characterise the feedback-driving 

stars and the feedback-driven gas
- Quantify the star/gas interplay 

GMC scales
Aim: 
- Measure spatially resolved SFHs, 
SFRs, chemical enrichment
- Ground-truth SPS models

Kiloparsec scales
Aims:
- Quantify effect of spatial 

resolution on galaxy properties
- Connect the local to the high-z 

Universe

The Spatial Resolution Project

Bron Reichardt 
Chu Zefeng Li

Bjarki 
Björrgvinsson



1-10s pc scales 100 pc scales kpc scales

Individual stars and HII regions
Aim:
- Characterise the feedback-driving 

stars and the feedback-driven gas
- Quantify the star/gas interplay 
Method:
- IFU+HST method (as proven in 

McLeod+20, 21)

GMC scales
Aim: 
- Measure spatially resolved SFHs, 
SFRs, chemical enrichment
- Ground-truth SPS models
Method:
- Fit HST CMDs with MATCH
- Fit IFU integrated spectra with 

PROSPECTOR

Kiloparsec scales
Aims:
- Quantify effect of spatial 

resolution on galaxy properties
- Connect the local to the high-z 

Universe
Method:
- Convolve observations to lower 

and lower spatial resolution 

The Spatial Resolution Project



SPS model validation workflow
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Resolved Unresolved

MATCH
Dolphin

hoki/AgeWizard
Stevance+20

spectroscopy

hoki, 
PROSPECTOR
Stevance+23, Johnson

age
metallicity
mass

SLUG 
Krumholz+15

spectroscopy

photometry

age

CMD:
age
metallicity
SFR
SFH

age
metallicity
SFR
SFH

Test #1 - model inputs: observed vs model spectra

Test #2 – biases and uncertainties of fitting routine: SED vs CMD fit



NGC 300

Credit: MPG/ESO La Silla

1’ = 550 pc
ALMA (molecular gas)
MUSE (ionized gas)
HST (stars)

The nearby galaxy NGC 300 (2 Mpc) gives us access to  > 100 star-
forming regions & their stars simultaneously

See also Kruijssen+19 (incl. McLeod)



NGC 300

Credit: MPG/ESO La Silla

1’ = 550 pc
ALMA (molecular gas)
MUSE (ionized gas)
HST (stars)

[SII]6717
Hα

[OIII]5007

MUSE ionized 
gas

The nearby galaxy NGC 300 (2 Mpc) gives us access to  > 100 star-
forming regions & their stars simultaneously

See also Kruijssen+19 (incl. McLeod)
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NGC 300 zoom-in

exploiting high spatial resolution photometry from the Hubble Space Telescope



Resolving single stars at Mpc distances with IFUs 

➔ Accurate PSF fitting allows enhanced spectral extraction at large distances / in crowded 
fields (as demonstrated in Kamann+16)

0.1” = 70 pc

HST
MUSE

NGC 300 zoom-in

NGC 300 zoom-in

exploiting high spatial resolution photometry from the Hubble Space Telescope



MUSE IFU data + enhanced spectral extraction: 
identification of 13 O-type and 4 WR stars in an initial study of 5 star-
forming regions in NGC 300 

[SII]6717
Hα
[OIII]5007 MUSE VRI HST F814W

McLeod et al. 2020
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MUSE IFU data + enhanced spectral extraction: 
identification of 13 O-type and 4 WR stars in an initial study of 5 star-
forming regions in NGC 300 

[SII]6717
Hα
[OIII]5007 MUSE VRI HST F814W

WR star + PoWR model atmosphere

McLeod et al. 2020

This is a 100% increase from previous census of O stars in these 
regions 

-> detailed feedback analyses in nearby galaxies is feasible
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From massive stars on a CMD to cluster ages (not using isochrones)

Stevance, Eldridge, McLeod, Stanway, Chrimes, 2020

• Traditional isochrone fitting 
underestimates ages up to 3 Myr!

• Single-star models are unable to 
predict ~20% of the ages compared 
to binary models

• Applicable even with small sample 
sizes
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The Spatial Resolution Project

+ future data (LVM, JWST, …)
+ simulations (e.g., EDGE)
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Want to help or get involved? Get in touch!
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Yes.

Bright -> easily detected
Use them for model validation even if low-mass 

stars not spectroscopically characterizable
 

The massive stars in them are sources of feedback 
and of escaping photons 

Can we learn something (about the high-z 
Universe) from resolved massive stars (clusters) 

in the nearby Universe?
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Putting it all together

Stellar feedback is the (not so) secret ingredient
Nearby galaxies are key to mastering the recipe
Distant galaxies require a cookbook (SPS models) 
SPS models: great for food photos, tricky for taste
Next step: taste-test the recipe 

Thank you, AI
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Anna McLeod (co-chair)
Benedetta Vulcani (co-chair)
Sandro Tacchella
Giovanni Cresci
Angela Adamo

Robert Feldmann
Allison Noble
Stephanie Tonnesen
Hannah Übler

THE MANY SCALES OF GALAXY 
ENVIRONMENTS

July 13-17, 2026
Ascona (Switzerland) 

The Local Galactic Ecosystem - Star Formation, AGN, 
and Feedback in Context
Galaxies in the Cosmic Web - Environmental Drivers 
of Evolution
Cosmic Time and Environmental Transformation
The Environmental Cascade - Linking Mpc to pc 
Scales

There will be sun. 
And good food. 
And really on time public 
transport.
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