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Today’s program

1. Stellar feedback: a bit of background
2. What have we learned from resolved feedback studies so far?

3. Canwe learn something about the early Universe from local
studies?

4. Stellar population synthesis & the IMF
5. Connecting the local to the distant Universe



Today’s program

1. Stellar feedback: a bit of background



Feedback = deposition of energy (E), momentum (p), and metals (X)
into the surrounding medium by massive (M > 8 My) stars




Stellar feedback is a multi-scale, multi-temporal, multi-phase, and
multi-wavelength phenomenon
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Stellar feedback is an umbrella term

pre-supernova
feedback

Onset of star
formation 3 Myr

see Krumholz+14, Geen+23 (incl. McLeod), Chevance,
Krumholz, McLeod+23,
Lucas+20, Haid+18
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The gas around the MYSOs is
warm, 200-600 K out to r<104AU
(resolution ~1000 AU)
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Stellar feedback affects the environment from sub-pc to kpc scales

The gas around the MYSOs is
warm, 200-600 K out to r<104AU Molecular clouds

(resolution ~1000 AU) ‘ evaporate faster when
exposed to more photons
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Stellar feedback affects the environment from sub-pc to kpc scales
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Without stellar feedback the simulated Universe would not look
like the observed.
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Without stellar feedback the simulated Universe would not look
like the observed.
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Almost all gasis
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But: whatis the right feedback recipe?
Need to know about the stellar

populations doing the feedback

: n., Hopkins+11
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Today’s program

2. What have we learned from resolved feedback studies so far?
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We have quantified the photoevaporative effect of ionizing feedback

How? By measure the photo-evaporation rate for pillars in
different types of environments

Pillars in Carina

- e

- Pillarin NGC 3603

McLeod+16; ESO press release eso1639b, credit ESO/A. McLeod



Pillars exposed to more stars (or more massive stars) evaporate
faster

MclLeod et al., 2016b
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Pillars exposed to more stars (or more massive stars) evaporate

faster
| — Lefloch & Lazareff
| - s

Mass-loss rate of pillars
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Pillars exposed to more stars (or more massive stars) evaporate
faster
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Why the Milky Way is not the final frontier of feedback studies:

1.

Imaging entire regions
is prohibitively
expensive

This would require >180 hours!

MUSE pointings, - |

Credit: ESO

2.

Extinction
caused by gas
and dust limits
our view

3.

The Milky Way is not
representative of
feedback across the
Universe

Jarrett+12



Need large number of observations in different environments to
statistically characterize feedback
Why the Milky Way is not the final frontier of feedback studies:

1. Imaging entire regions [] 2. Extinction 3. The Milky Way is not
is prohibitively caused by gas representative of
expensive and dust limits feedback across the

our view Universe

This would require >180hours! || -~ - . ll! T ‘ s
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Credit: ESO
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Conditions in the Universe differ, and vary with Cosmic Time, e.g.,

metallicity .
Age of the Universe Lower metallicity, what does it do?

-> stellar winds are line-driven
g(M, /) -> less lines means less momentum

Log /Mg) =95

Log(M. /M transfer

Log(M./M -> weaker stellar winds at lower

Need to quantify star formation and stellar feedback in these
conditions.

-> higher radiation pressure from stars
at lower metallicities

Redshift



Conditions in the Universe differ, and vary with Cosmic Time, e.g.,

metallicity .
Age of the Universe Lower metallicity, what does it do?

: ; ““ -> stellar winds are line-driven
-> less lines means less momentum

transfer

-> weaker stellar winds at lower

Sy

-> higher radiation pressure from stars
at lower metallicities

Redshift

=» Exploit nearby (resolved), metal-poor galaxies to understand feedback at high
redshifts (Lopez+14, McLeod+19, McLeod+22, McLeod+24, Rowland+24)
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In different environments = pressure terms
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VLT/MUSE observations
Simultaneous characterization of individual feedback-driving stars
and resolved feedback-driven gas

> 60 O & WR stars

. [LMCN180

. [OllI]5007

McLeod+18b



Feedback in massive star-forming regions in the LMC:
quantify different

Which feedback mechanisms are dominant?

Direct radiation pressure
Pressure of ionized gas

7x1071%  8x 1071 9x1070
o+ (dyn cm—2

=» The Hll region expansion is mainly driven by and the

(see also Lopez+14)
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Which feedback mechanisms are dominant?

Direct radiation pressure

These are only a handful of regions inthe LMC. How does this depend on the
environment? E.g. metallicity and location within the host galaxy?
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Feedback in massive star-forming regions in the LMC:
quantify different

Which feedback mechanisms are dominant? SMC; Violet-Brace
MSc thesis

y . 2 ¢

7 Direct radiation pressurcjiis “
These are only a handful of regions inthe LMC. How does this depend on '
environment? E.g. metallicity and location within the host galaxy?

MW: Amber Sedgley
MSc thesis

6x 1010 7x10710  8x10-10 g9x1p-10

P..; (dyn cm—2

=» The Hll region expansion is mainly driven by and the

(see also Lopez+14)
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Metallicity-dependent pre-SN feedbackin NGC 300
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Metallicity-dependent pre-SN feedback in NGC 300

NGC 300
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Pre-SN feedback affects the density and 3D ISM geometry a SN will explode into

where stellar feedback
is enhanced, SNe
explode into lower-
density ISM

density [g cm™3]

>
=
o
c
o
©
>
2.

™
|
13}
o
>
p o)
[Z)
2
(=)

0.10 0.15 0.20 0.25 0.30 0.35 0.40

galactocentric radius

Lucas+20
MclLeod+21



Pre-SN feedback affects the density and 3D ISM geometry a SN will explode into

where stellar feedback
is enhanced, SNe
explode into lower-
density ISM
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Exploring the very low metallicity regime
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Rowland, McLeod+24
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Feedback studies in nearby galaxies

See also Barnes+21

Galaxy = IC5332

Galaxy = NGC1365

Galaxy = NGC1566

Galaxy = NGC3627

Galaxy = NGC4535

Galaxy = NGC0628

Galaxy = NGC1385

Galaxy = NGC1672

Galaxy = NGC4254

Galaxy = NGC5068

Galaxy = NGC1087

Galaxy = NGC1433

Galaxy = NGC2835

Galaxy = NGC4303

Galaxy = NGC7496

McLeod+in prep.

Galaxy = NGC1300

Galaxy = NGC1512

Galaxy = NGC3351

Galaxy = NGC4321

Galaxy = NGC300




Feedback studies in nearby galaxies
McLeod+in prep.

Galaxy = 1C5332 Galaxy = NGC0628 Galaxy = NGC1087 Galaxy = NGC1300

Galaxy = NGC1385

Galaxy Lo

Metallicity gradient slope

Galaxy SFR Py slope |~ Galaxy SFR Py curvature

Galaxy = NGC1672

ty gradient slope tinction gradient slope
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Dust extinction gradient slope Galaxy M.

Galaxy = NGC5068
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See also Barnes+21



Feedback studies in nearby galaxies

McLeod+in prep.

Galaxy = NGC1300

Galaxy Lo adient slope

Galaxy SFR P, curvature
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See also Barnes+21
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And where are we with simulations?

Simulated Ha (R)
10!

do stars T dust map of solar 1.25 kpc volume
Ly cont. RT sim

10°

McCallum+25
(incl. McLeod)



Let’s take a moment to digest

» Stellar feedback is an essential component in regulating star
formation and galaxy evolution

* This inherently becomes a cosmic time issue

* To understand the interdependence of the ISM conditions and
feedback we must know about the stars

» Stars & star clusters in the early Universe are unresolved
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3. Canwe learn something about the early Universe from local
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Do local analogs of high-z galaxies exist?

NGC 5253
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Do local analogs of high-z galaxies exist?

’ NGC 5253
NGC 5253
M. 31 0° Mg )
SFR ~ 1 M@/yr g T e
A, ~ 8 - 25 mag 3
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Do local analogs of high-z galaxies exist?

’ NGC 5253
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Do local analogs of high-z galaxies exist?

NGC 5253

NGC 5253

M* "1"1 08 M@ o
SFR~1Mg/yr =
Ay~ 8 — 25 mag
Z~0.2-0.32

75 85
log(M+/Mg)

log([ONIYHE)

P Y 3 A% s Y 5 | g
Lo ¥ i - log(M:/Ms) log(M-/Ms)
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Maybe they do, but:
* Local analogs typically have higher metallicities

 Otherfactorsto consider
* E.g.,uncertainty of escape fraction evolution with redshift

 E.g.,dynamical states might have been different at high z
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Today’s program

4. Stellar population synthesis & the IMF
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Stellar population synthesis and the IMF

Curtesy of Elizabeth Stanway (U Warwick)

Feedback is caused by stars.
We need to understand stars before we understand feedback at any scale.

(see Geen+23)

Assuming that we understand stars, how do we synthesize a stellar population?

Isochrones
(:ngst ;);p?\lse?]f Population: stars of various Population
g Synthesis Prediction of integrated light
(color, spectrum, luminosity)

masses born approx. at the

age)
same time (single-age pop)

or over range of time
(composite pop)

of a stellar population
(cluster, galaxy)
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 Stellar absorption
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Beatrice Tinsley

The concept of SPS codes can be traced back to New Zealand/American astrophysicist
Beatrice M Tinsley.

EVOLUTION OF THE STARS AND GAS IN GALAXIES

BEATRICE M. TINSLEY
The University of Texas
Received March 2, 1967, revised June 12, 1967

ABSTRACT

A numerical computation of evolution starts from gas with Population I composition; then stars are
formed at all times, at rates which are functions of stellar mass and mass of gas in the galaxy. Discrete
time steps of 10° years are used, and 13 stellar masses. The stars are placed on the H-R diagram ac-

cording to their masses and ages; each star ends as a white dwarf, while its excess mass enriches the
interstellar gas. Different evolutionary sequences are constructed by adjusting four parameters of a
stellar birth-rate function. Then “galaxies” resulting from each sequence of 10-12 X 10? years are com-
pared with observed local galaxies with respect to colors, mass-to-light ratio, relative mass of gas, and

1 96 7 _ P h D Th e S| g types of stars contributing to the light.
. “Galaxies” closely resembling all normal types, Im to E, can be formed with a stellar birth rate pro-
. . portional to the inverse square of stellar mass and to the mass of gas in the galaxy; the types differ in
EVO lutl on Of Ga l.aX| es initial rate of gas consumption and in the birth rate of very low-mass stars. These types can all have the
. . . o same age, and do not form an evolutionary sequence.

an d |tS S | gn |f| cance It is shown that giant elliptical galaxies may have been so much brighter at short wavelengths a few
billion years ago that the observed magnitude-redshift relation can be interpreted in terms of cosmological

fo r C osmo l Ogy models that do not suffer from the high density and small age of the conventionally preferred model.

ApJ, 151, 547 (1968)

Image source: wikimedia
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Milky Way

Full SED modeling o eew v
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Combining SSPs with:

 star formation history T e e s
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« metallicity history e T
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* dustabsorption and emission

produces a full synthetic spectral energy
distribution (SED)
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(image: Conroy 2014)



Salpeter
Milky Way

Full SED modeling o s
N .

Combining SSPs with:

 star formation history T e e s
o e . M Mg
* metallicity history e T

* nebular gas
e dustabsorption and emission

produces a full synthetic spectral energy
distribution (SED)

CSp

=>» infer key physical properties ()

of unresolved stellar populations _ _

(image: Conroy 2014)
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e Starburst99 (Leitherer+)
* Flexible Stellar Population Synthesis (FSPS, Conroy+)

* the Maraston 2005, 2011 models



Into the 2000s

Leading evolutionary SPS codes (with spectroscopy) include

* GalaxEv (Bruzual and Charlot 2003, CB16)
e Starburst99 (Leitherer+)
* Flexible Stellar Population Synthesis (FSPS, Conroy+)

* the Maraston 2005, 2011 models

All of these use primarily isolated,



Next: 3 key ingredients to SPS models

1. Binaries
2. Nebular gas & dust
3. IMF
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* the fraction of stars in binary systems increases
with stellar mass
* binaryinteractions (mass transfer, mergers,

etc.) affect stellar evolution



Binaries in the Universe

e

o
o

Kepler EBs (Kirk+16)

o
N

Volume Limited (Raghavan+10)
APOGEE RV Variables (Badenes+18)
High—Proper—Motion SBs (Latham+02)
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Bias—corrected Solar—type
Close Binary Fraction (a < 10AU)
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N
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Primary Mass / Msun

* the fraction of stars in binary systems increases “The Close Binary Fraction of Solar-type Stars Is
with stellar mass Strongly Anticorrelated with Metallicity”
* binaryinteractions (mass transfer, mergers, Moe+19

etc.) affect stellar evolution
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The need for binary models

* The spectra of young stellar populations are dominated by the
most massive stars (feedback!)

* 70% of massive stars interact with a binary partner in their
evolutionary lifetime

* The effects of these interactions are strongest at low metallicities
(early Universe!): stars are hotter

=» We cannot ignhore binaries in emission line galaxies



The need for binary models

What this means in practice:

Binary interactions
(mass transfer, common
envelope phases, mergers)

Hotter, more luminous,

longer-lived stars

Ages: overestimated
SFR: underestimated
Stellar masses &
metallicities: misestimated




The need for binary models

Young, massive

What this means in practice: stars

Binary interactions
(mass transfer, common
envelope phases, mergers)

Hotter, more luminous,
longer-lived stars

Blue part
of SED
> Luminous, older
P binaries

Ages: overestimated
SFR: underestimated

Stellar masses &
metallicities: misestimated




Stellar spectra

Stellar (atmospheres
evolution Initial Mass or
| tracks Function Composite observations)
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NMEERIE
stars

e Stellar type ratios « Composite spectra
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diagrams diagrams
* Supernova rates  Stellar absorption

Stellar e Stellar mass and emission lines
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Tests for
supernova

outcomes

Binary Stellar
evolution tracks
(function of mass,
period, mass ratio, Z)

Initial period and

mass ratio
distributions

Stripped and He
star
atmospheres

Stellar spectra
(atmospheres
or

Stellar

Rejuvenation and evolution

mixing

Initial Mass
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evolution (P,a)
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Identify GRBs, accreting
compact objects,
compact object mergers

e Stellar type ratios

(e . GRB + GW chirp rates
* Lt « XRB number counts

di « SN distributions/kicks
* St * Remnant masses

e Stellar mass

 Composite spectra

Post-Main “lours

Sequence

*

* Bluer, harder spectra
» Stronger stellar

absorption lines
. ____._.0N

Stellar and emission lines

remnants



Binary population synthesis

* Binary PopSynth Codes:
 BSE (Hurley+)
e StarTrack (Belcyznski+)
* SEVN (Mapelli+)
* POSYDON (Fragos+)

* Binary Spectral PopSynth Codes:

Eldridge, Stanway+
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Nebular gas and dust

To fit real stellar populations gas and dust must also be
considered (feedback!)

—> absorbs away blue light, produces nebular continuum and line
emission (gas), far infrared emission (dust)

—> key parameters: gas density (n,), ionizing spectrum, gas
composition, ionization parameter (n,,, per gas particle), dust
extinction curve (k|), dust emission curve)

Specialist radiative transfer codes (e.g. Cloudy) must be used
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Mass functions

There are a range of mass functions to consider in
population synthesis:

(MF at time of starburst)

(MF after accounting for
stellar evolution)

(MF after accounting for cluster dissolution and
population mixing)

, e.g. galaxy-wide IMF, Salpeter IMF
e stellar cluster mass functions + cluster stellar IMFs
* e.g. IGIMF theory (Kroupa & Weidner 2003)



Initial mass functions

When a starburst occurs, stars of a wide range of masses are formed.

——— We now know that the Salpeter law
o7 I (single powerlaw) overpredicts the

KroupaOl
Chabrier03individual

Chabrior03system number of low mass stars and needs

a cut-off (e.g. Chabrier 2003, Kroupa
2001)
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Initial mass functions

What is the true slope?

Log (Number of Stars)

0.08 1 10 100

Mass (Msun) (See e.g. Stanway+19)
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Initial mass functions

Is the IMF
sampled
stochastically?

+ +

Log (Number of Stars)

0.08 1 10 100

Mass (Msun) (See e.g. Stanway+19)



Initial mass functions

s What about
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Log (Number of Stars)

0.08 1 10 100

Mass (Msun) (See e.g. Stanway+19)



Initial mass functions: universality?

Kroupa 2007

Chabwier 2005
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Ol aswocaon
Young duster
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P. Hennebelle! and M.Y. Grudié* ./(-: '.:‘l'.:," :l‘:l ..': ". -
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Initial mass functions: universality?

- Kroupa 2007
5 =] " . " r . "wW\NL

' Annual Review of Astronomey and Astrophysics = (RaDrer JuUs

Typical peak/plate sy

Ol aswocaon

Young duster

MW S

MW Budae 1

vy BARQE N 2015

Globsular dutter iy

P. Hennebelle! and MY, Grodi#? SR vos s

“Studies comparing these [Kroupa, Chabrier] models have generally found them to be
similarly compatible with observations, as well as other parameterizations [...]. However,
it is not possible to draw a single curve through all data points [...] that avoids tension

with all measurements; [...]
The strong hypothesis of a true IMF universality is unlikely.

- —~—

Stedlar mass (M)



Let’s take a moment to digest

So, you’re using an SSP? You should ask what it’s using for:

e Stellar evolution models

e Stellar atmosphere models

* |[nitial mass function and model mass range
* |Initial composition/metallicity

* Binary parameters

* Nebular gas or dust assumptions



Today’s program

5. Connecting the local to the distant Universe
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Degeneracies!
(Pforr+12, Maraston+10)



BPASS+hoki
(Stevance, Eldridge, Stanway)

ent Metallicitie

SPS models need validation

i 250

Age
Meta ll.iCity y e Different Ages (Normalised
=» Validate via apples-to-apples comparison
resolved + integrated observations
VS
resolved + integrated models
at known O/H and spatial variations
Age . .
Mget “Knowing what goes in to trust what comes out”
SFR
SFH |
Degeneracies!

(Pforr+12, Maraston+10)
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The Spatial Resolution Project

7D

- Quantifyhe star/gs interplay - Ground-truth SPS models - Connectthe local to the_high-z
Universe

1-10s pc scales 100 pc scales kpc scales



The Spatial Resolution Project

GMC scales

Aim:

- Ground-truth SPS models

1-10s pc scales 100 pc scales kpc scales



SPS model validation workflow
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The nearby galaxy NGC 300 (2 Mpc) gives us access to > 100 star-
forming regions & their stars simultaneously

. .' VG X

._'*.

e Credit’MPG/ESO La Silla

See also Kruijssen+19 (incl. McLeod)



The nearby galaxy NGC 300 (2 Mpc) gives us access to > 100 star-
forming regions & their stars simultaneously

HST (StarS) e g i 90 A i g '. . C.r..edi.t:;l\'/I.P.G/ES.OLa a' . PR ] 4 ‘ | " '.\

See also Kruijssen+19 (incl. McLeod)
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Resolving single stars at Mpc distances with IFUs

‘NGC 300 zoom-in. - ‘HST
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Resolving single stars at Mpc distances with IFUs

exploiting high spatial resolution photometry from the Hubble Space Telescope
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Resolving single stars at Mpc distances with IFUs

exploiting high spatial resolution photometry from the Hubble Space Telescope

‘NGC 300 zoom-in. - ‘HST
' - s e MUSE
. 'I"'.-':; ™
W .'.'., “ *
AR .
‘.-~ NGC300zoom-in

C047=70pc




Resolving single stars at Mpc distances with IFUs

exploiting high spatial resolution photometry from the Hubble Space Telescope
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Resolving single stars at Mpc distances with IFUs

exploiting high spatial resolution photometry from the Hubble Space Telescope
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Resolving single stars at Mpc distances with IFUs

exploiting high spatial resolution photometry from the Hubble Space Telescope

'NG‘C.;?'OO_ZOOI'I‘;,'-_in_'_ ' sy HST
g e MUSE

e .. AT Wk, . . ‘ .
B O .
AR a] A T NGC 300 zoom-in

- 0.12=70 pc -




Resolving single stars at Mpc distances with IFUs

exploiting high spatial resolution photometry from the Hubble Space Telescope

'NG‘C.;?'OO_ZOOI'I‘;,'-_in_', ‘ sy HST
g e MUSE

S

AT

: ' NGC 300 zoom-in

- 0.12=70 pc

=>» Accurate PSF fitting allows enhan tral extraction at large distances / in crowded
fields (as demonstrated in Kamann+16)



MUSE IFU data + enhanced spectral extraction:
identification of 13 O-type and 4 WR stars in an initial study of 5 star-
forming regions in NGC 300
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MUSE IFU data + enhanced spectral extraction:
identification of 13 O-type and 4 WR stars in an initial study of 5 star-
forming regions in NGC 300
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MUSE IFU data + enhanced spectral extraction:
identification of 13 O-type and 4 WR stars in an initial study of 5 star-
forming regions in NGC 300
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MUSE IFU data + enhanced spectral extraction:
identification of 13 O-type and 4 WR stars in an initial study of 5 star-
forming regions in NGC 300
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MUSE IFU data + enhanced spectral extraction:
identification of 13 O-type and 4 WR stars in an initial study of 5 star-
forming regions in NGC 300
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This is a 100% increase from previous census of O stars in these
regions

-> detailed feedback analyses in nearby galaxies is feasible
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From massive stars on a CMD to cluster ages (nhot using isochrones)

Stevance, Eldridge, McLeod, Stanway, Chrimes, 2020

Step 1

Find grid element that most closely matches each observation

A modeled

MD/HRD [EXeKe] (e

Each cell is a bin in Colour-Magnitude
or Temparature-Luminosity space. It's
shaded according to what proportion of
the predicted stellar population is in it.

Step 2

Record how populated our matched bin is at each time step,
and normalise to create a Probability Distribution Function.

YCMD/HRD object

contains 51 time bins |
In other words: 51 CMDs/HRDs - one
for each BPASS time step.

Count/PDF

Step 3
Combine individual PDFs to find the most likely age of the
cluster. (Optional outlier removal available).
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Stevance, Eldridge, McLeod, Stanway, Chrimes, 2020
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Find grid element that most closely matches each observation

A modeled

MD/HRD [EXeKe] (e

Each cell is a bin in Colour-Magnitude
or Temparature-Luminosity space. It's
shaded according to what proportion of

the predicted stellar population is in it. °® Tra d itiO n a l i S OC h ro n e fitt i n g
gj&g h%w populated our matched bin is at each time step, u n d e reSti m ate S a ge S u p to 3 M yr!

and normalise to create a Probability Distribution Function.

YCMD/HRD object

contains 51 time bins |
In other words: 51 CMDs/HRDs - one
for each BPASS time step.

Count/PDF
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Combine individual PDFs to find the most likely age of the
cluster. (Optional outlier removal available).
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From massive stars on a CMD to cluster ages (nhot using isochrones)

Stevance, Eldridge, McLeod, Stanway, Chrimes, 2020

Step 1
Find grid element that most closely matches each observation

A modeled

MD/HRD [EXeKe] (e

Each cell is a bin in Colour-Magnitude
or Temparature-Luminosity space. It's
shaded according to what proportion of

the predicted stellar population is in it. °® Traditional iSOChrone fitting
?gggh%w populated our matched bin is at each time step, undereStimateS ages up to 3 Myr!
Single-star models are unable to

FNCMD/HRD object
ML predict ~20% of the ages compared
& | H to binary models

contains 51 time blns ‘
other words: 51 CMDs/HRDs
h BPASS time step.

Count/PDF

Combine individual PDFs to find the most likely age of the
cluster. (Optional outlier removal available).
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From massive stars on a CMD to cluster ages (nhot using isochrones)

Stevance, Eldridge, McLeod, Stanway, Chrimes, 2020

Step 1
Find grid element that most closely matches each observation

A modeled

MD/HRD [EXeKe] (e

Each cell is a bin in Colour-Magnitude
or Temparature-Luminosity space. It's
shaded according to what proportion of

* Traditionalisochrone fitting

e o st cumacrea s . o e e underestimates ages up to 3 Myr'

= y | * Single-star models are unable to
ML predict ~20% of the ages compared

@S| H to binary models

B | * Applicable even with small sample

T E ‘ sizes

Combine individual PDFs to find the most likely age of the
cluster. (Optional outlier removal available).

INCMD/HRD object

contains 51 time blns ‘

other words: 51 CMDs/HRDs
h BPASS time step.

Count/PDF
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The Spatial Resolution Project

IFU HST
NGC6822 0.5 | 8.06 | SITELLE archival
1IC1613 0.7 | 7.86| SITELLE archival
M31 SITELLE PHAT'

M33 SITELLE ~ PHAT? + future data (LVM, JWST, ...)
LeoP MUSE archival + simulations (e.g., EDGE)
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Can we learn something (about the high-z
Universe) from resolved massive stars (clusters)
in the nearby Universe?

Yes.

Bright -> easily detected
Use them for model validation even if low-mass
stars not spectroscopically characterizable

The massive stars in them are sources of feedback
and of escaping photons
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Putting it all together

Stellar feedback is the (not so) secret ingredient
Nearby galaxies are key to mastering the recipe
Distant galaxies require a cookbook (SPS models)
SPS models: great for food photos, tricky for taste
Next step: taste-test the recipe

n M >Thankyou,AI



THE MANY SCALES OF GALAXY
ENVIRONMENTS

July 13-17, 2026
Ascona (Switzerland)

The Local Galactic Ecosystem - Star Formation, AGN,
and Feedback in Context

Galaxies in the Cosmic Web - Environmental Drivers
of Evolution

Cosmic Time and Environmental Transformation

The Environmental Cascade - Linking Mpc to pc
Scales

SOC

Anna Mcleod (co-chair) Robert Feldmann
Benedetta Vulcani (co-chair) Allison Noble
Sandro Tacchella Stephanie Tonnesen
Giovanni Cresci Hannah Ubler

Angela Adamo
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And really on time public
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