
A general introduction to
machine-learning

and deep learning methods
Adeline Paiement, LIS lab, University of Toulon

Introducing myself…

2008 : Engineering degree +
astrophysics MSc

2013-2016 : Postdoc
• Machine learning
• Internet-of-things

2009-2013 : PhD
• Computer vision
• Medical image analysis

2008-2009 : Developer
• Robotics
• Computer vision
• Mars exploration rover

2016-2018 : Research lecturer
• Department of Computer Science,

Visual Computing research group
• IA for (physical) sciences

2018 - : Maître de conférences
• Laboratoire d’Informatique et des Systèmes (LIS),

pôle Science des Données
• AI for (physical) sciences

Outline:

• Introduction to machine learning

• Unsupervised learning

• Supervised learning

• Example application to classifying images

• Training in practice

• Neural networks and deep learning

• Introduction to neural networks and deep learning

• Application to images

A deluge of data

Fact: The amount of data we produce increases exponentially

Data-oriented statistical model: perceived as a solution when:

● Weak or non-existing prior knowledge to build a mathematical/physics model that is robust to all possible
noise and transformations

● Plenty of data available

● Complex relationship between raw input data and the information to be extracted

A deluge of data

Statistical machine learning algorithms have increased in popularity since the 90s.

Artificial intelligence
(early ~1960)

Statistical machine learning
(boom > 1990)

Deep-Learning
(boom > 2012)

Objective: Using a large amount of data to mine/synthetize/index the information contained in the data
automatically

Decision helping

• Nature:
• images
• sound
• text
• graph
• sequences
• …

Data challenges
• Source:

• telescopes
• spectrographs
• LASER
• SONAR
• accelerometers/gyroscopes
• Highly integrated complex information systems

(smart-cities, flux web, XML, etc...)
• …

• Large dimensionality → Curse of dimensionality

• Multi-modal: multiple sensors with various properties, not necessarily pre-aligned nor synchronised

• Defects:
• Measurement noise, outliers
• Missing values
• …

Generic data processing pipeline

Data collection

Preparation

Feature
extraction

Cleaning

Machine learning

Supervised

Unsupervised

Prediction

Feedback (optional)

Reduction
Semi -

supervised

Weakly
supervised

Data collection

Preparation

Feature
extraction

Cleaning

Machine learning

Supervised
Prediction

Reduction
Semi -

supervised

Weakly
supervised

Methods and steps are chosen based on:

• The data

• The problem

Generic data processing pipeline

Unsupervised

 Association pattern mining
Finding patterns in the data

 Clustering
Identifying groups with similar properties

 Classification
Associating objects with predefined classes

 Outlier detection
Finding objects/patterns which do not match the rest of the dataset

Note: there are usually multiple ways to tackle a same problem

Data collection

Préparation

Feature
extraction

Cleaning

Machine Learning

Reduction

Supervised

Unsupervised
Semi -

supervised

Weakly
supervised

Four main types of problems

 Clustering
Identifying groups with similar properties

Clustering (pixel) values

Clustering observations (images, spectra…)

Four main types of problems

 Classification
Associating objects with predefined classes

“Which kind of bird is it?” Which pixels belong to the dog? → Segmentation

Four main types of problems

Main machine learning tasks

 Unsupervised learning
Only input data is available. No labels.

 Supervised learning
Each piece of data comes with an annotation → typically costly

 Semi-supervised learning
Only part of the dataset is annotated

 Weakly Supervised learning
For each piece of data, a (simple) annotation is available, but it only contains part of the relevant information

Data collection

Préparation

Feature
extraction

Cleaning

Machine Learning

Reduction

Supervised

Unsupervised
Semi -

supervised

Weakly
supervised

Main tasks consist in:

● Finding groups (clustering)

● Finding a lower-dimensionality representation of the data

● Finding interesting trends in the data

● Approximating density functions

Unsupervised learning More about this
in the next lecture

Aims:

● Project the data in a different space where it is better structured

● Reduce dimensionality

● Identify main modes of variation

Dimensionality reduction / Manifold learning

Supervised learning

Supervised learning

• Feature selection

• Feature extraction

• Dimensionality reduction

may be first steps of data preparation for a further analysis with supervised learning.

Supervised learning is based on:

• Data

and

• Annotations / labels → costly

Assumption: The data is representative of the process to model

In the last 20 years, the number and size of annotated image databases have increased dramatically

• 100s → several hundred millions image (e.g. ImageNet)

• 10s → several thousands classes

• Annotations at several levels (classes, bounding boxes, contours, etc…)

Some popular image databases: ImageNet, COCO (Common Objects in Context), CIFAR, Pascal VOC,
etc…

Large image databases

(Semi-, weakly-, fully-) supervised learning has developed dramatically in computer vision

Example task: telling if the image shows a face

Annotation: one scalar label per image

Example of classification for images

image shows a face image doesn’t

In general, learning is not performed directly on the images,

but from features / descriptors :

• Reduction of the dimensionality

• First stage of information extraction

Classification for images

The classification task

• Find the function which associates a label 𝑦 to the feature 𝒙.

ℎ often has a set of parameters 𝜃: ℎ(𝒙, 𝜃)

• For a new feature , use ℎ predict the label ෤𝑦

This task must be achieved from a subset of all possible data samples

SVM: ℎ 𝒙 = 𝒘𝑇𝒙 + 𝑤0 and 𝑦 ∈ {−1; 1}

Total risk is defined as:

with a loss function that measures the cost of difference between the model’s
prediction and the true label 𝑦

In practice, is not know, and we can only compute the empirical risk:

Training of the classifier:

Optimisation (e.g. gradient descent) on minimizing the empirical risk

Risk and performance

𝑧 = (𝒙, 𝑦)

Training a classifier, measuring performance

Problem: we only have finite number of data samples in our dataset

→ How do we know that the empirical risk is representative of the real risk?

Training a classifier, measuring performance

Problem: we only have finite number of data samples in our dataset

→ How do we know that the empirical risk is representative of the real risk?

It can be shown that for a sufficiently large dataset:

• the empirical risk tends towards the real risk

• the model’s parameters 𝜃 tend towards the optimal model parameters

→ How large is large enough?

Training a classifier, measuring performance

If we divide our dataset into two subsets

It can be shown that:

• the empirical risk computed on the test set tends towards the real risk

• the model’s parameters 𝜃, learnt on the training set, tend towards the optimal model parameters

→ We can test generalisation

→ How large is large enough?

In practice, the empirical risk on the test set is an estimator of the real risk

Training a classifier, measuring performance
If we divide our dataset into two subsets

Caveats:

If the test set is too small or badly chosen, the empirical risk deviates from the real risk

Some (very recommended) solutions:

• Random sampling:

• Averaging over several trainings:

Training a classifier, measuring performance

Better, more systematic approach: K-fold cross validation

Benefits on small datasets:

• All data samples are used (once) for testing

• The training set can be larger

• More folds → smaller bias of the risk estimator (but larger standard deviation)

Training a classifier, measuring performance

For very small datasets: Leave-one-out cross validation

Benefits on small datasets:

• Same as K-fold cross validation +

• Maximises the training set size

Cons:

• Lots of computations for training

Training and model selection

In addition to optimising the 𝜃 parameters of the model,

several algorithms need to optimise hyper-parameters: choice of model

Examples:

• Neural networks: numbers of layers and neurons

• SVM: regularisation constant

• Kernel-SVM: regularisation constant, parameters of the kernel

Never optimise these hyper-parameters on the same training set as the model’s parameters 𝜃

Training and model selection

Three subsets are needed:

Proceed in 7 steps:

1. Divide the dataset into training, testing, and validation sets

2. Pick a model (e.g. architecture of neural network)

3. Train the model on the training set

4. Evaluate the model on the validation set

5. Repeat steps 2 to 4 with several models / architectures

6. Select the best performing model

7. Do a classic K-fold cross validation with the training and testing sets

Optimisation of the hyper-parameters

Optimisation of the parameters

The more complex the model, the higher the risk of over-fitting

Empirical risk minimisation

Risk computed on training set

Risk computed on testing set,
estimator of real risk

Prediction error

Training iterations

Error on training set

Error on test set

Ideal Range

for Model Complexity

OverfittingUnderfitting

When the classifier’s memory increases, it relies more on memory and it becomes harder to classify unknown samples.
It’s ability to generalise decreases.

Empirical risk minimisation

2 common solutions:

• Stop training when the error computed on an additional validation set starts increasing

• “Early stopping”: stop training while the testing error is still decreasing a bit

Ideal Range

for Model Complexity

Empirical risk minimisation

Unbalanced datasets

• A very common problem with real world datasets!

• A very important problem to consider:

• Overfitting to the common class

• Ignoring the rare class

• Possible solutions:

• Getting more data

• Re-sampling (stratified sampling, over-sampling)

• Generate synthetic samples?

• Try different algorithms

• Try a different perspective (outlier detection? Optimising a different cost?)

Data augmentation

Data augmentation

?

Standard measures:

• Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃

• Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁

• F1-score: combines the previous two

• Accuracy: biased on unbalanced data, avoid it

• Etc.

Measuring the performance of a binary classifier

complementary

https://en.wikipedia.org/wiki/Precision_and_recall

https://en.wikipedia.org/wiki/Precision_and_recall

Standard way to presenting performance measures for a binary classifier

• True positive rate (sensitivity) as a function of false positive rate (1 – specificity)

• Area under curve (AUC) measures the difference to a random classifier (AUC = 0.5)

ROC curve

Where can we find learning algorithms?

Python

Nowadays the standard language for data mining and machine learning

Libraries:

• SciKit-Learn: many supervised and unsupervised algorithms

• PyTorch: Most popular frameworks for deep learning
• including high-level wrapper such as PyTorch Lightning

Neural networks
and deep learning

Why have neural networks become so popular?

Generic data processing pipeline

Data collection

Preparation

Cleaning

Machine learning

Supervised

Unsupervised

Prediction

Feedback (optional)

Semi -
supervised

Weakly
supervisedFeature

extraction
Reduction

Generic data processing pipeline

Deep learning version:

Integrates the feature extraction and reduction steps into the learning

Very popular in computer vision!

Data collection

Preparation

Cleaning

Machine learning

Supervised

Unsupervised

Prediction

Feedback (optional)

Semi -
supervised

Weakly
supervised

Feature
extraction

Reduction

“In-the-box” feature extraction

• Classical computer vision:

• Computer vision with deep learning:

Machine learning

Supervised

Unsupervised

Prediction
Semi -

supervised

Weakly
supervised

Machine learning

Supervised

Unsupervised

Prediction
Semi -

supervised

Weakly
supervised

“In-the-box” feature extraction

How do neural networks work?

Supervised learning scenario:

Find the function which associates a label 𝑦 to the data sample 𝒙.

• ℎ is implemented by a set of neurones, organised into layers

• 𝜃 are the parameters of the neurones

• ℎ and its parameters 𝜃 are optimised by gradient descent to minimize an empirical risk

Neural network are “normal” machine learning algorithms

How do neural networks work?

https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi

https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi

What is a neurone?

A neuron as an edge detector

This is only an example of what could trigger a neuron!

Triggering of a neuron

Some activation functions

What is a neurone?

How to train a neural network

• Minimisation of the empirical risk

• Choice of loss function:

• For classification:

• (Binary) Cross Entropy loss (“softmax”)

• Negative Log Likelihood loss

• Margin loss

• Soft Margin loss

• Kullback Leibler (KL) Divergence

• Etc.

• For regression:

• Euclidean error

• Mean Absolute error

• Mean Squared Error (Quadratic loss)

• Mean Squared Logarithmic Error

• Etc.

• For autoencoders:

• Absolute loss

• Mean Square loss

• Smooth Absolute loss

• Etc.

How to train a neural network
Procedure for training by gradient descent:

• Gradual and iterative updates

• Smoothed by the use of batches

Train on all the data: 1 epoch

…
Train on 1 batch,
then adjust the
parameters

Some types of neural networks

• Autoencoders

Possible uses: data reduction, denoising…

Some types of neural networks

• Recurrent neural networks

Used for sequences of data (e.g. temporal series)

memory of what
happened previously

Some types of neural networks

• Transformers

Used for sequences of data, may be adapted to visual data

Self-attention modules capture relationships within the data

https://newsletter.theaiedge.io/p/understanding-the-self-attention

Some types of neural networks

• Convolutional neural networks (CNNs)

Used for images

Convolution operation

Same filter (neuron) applied to all spatial locations → translational invariance, and fewer parameters to learn

Pooling operation

• Max pooling

 Reduce the number of parameters → makes the training faster and help reduce overfitting

 Introduce invariance to translation

 May introduce other invariances, e.g. to rotation

• Average pooling

Some popular CNN architectures
• AlexNet: historical classification on ImageNet

2 branches for 2 GPUs

Some popular CNN architectures
• Faster-RCNN: detection task

The feature map is used for 2 tasks

Some popular CNN architectures

• Mask-RCNN: detection and segmentation

The feature map is used for 3 tasks

Some popular CNN architectures

• YOLO: fast and lightweight detection

Multi-task neural networks
Shared feature map → features need to have more meaning

How should we interpret the predictions?
Classification layers: Predict the most likely class

 Cross-entropy loss:

Computed on softmax outputs which are between 0 and 1 and are often interpreted as a pseudo-probability distribution

 Negative Log Likelihood loss:

Measures the accuracy if the model tries to output a probability for each class

 Cosine proximity:

Compares two vectors, e.g.
~0
~1
~0

and
~1
~0
~0

 Hinge loss (max margin):

Compares the signs of the output and true label

The output is not necessarily a probability!

How much can we trust the model and its predictions?

Remember:

• We don’t have all the possible data in the world

• Data may be noisy, uncertain

→ Strong generalisation testing

→ and…?

How much can we trust these “end-to-end” trained black-box algorithms?

How much can we trust the model and its predictions?

How much can we trust the model and its predictions?

• Biased data → biased models!

How much can we trust the model and its predictions?

• Adversarial examples

Adversarial examples
Like optical illusions for CNNs…

How do we know what neural networks actually do?
Visualising what activates the CNN’s neurones: Layer-wise Relevance Propagation (LRP)

GoogleNet focuses on faces of animals
→ suppresses background noise, but doesn’t use context

S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLOS ONE, 10(7), 2015

A. Binder, G. Montavon, S. Lapuschkin, K.-R. Müller, and W. Samek: Layer-wise Relevance Propagation for Neural Networks with Local Renormalization Layers. ICANN 2016, 2016

How do we know what neural networks actually do?
Visualising what activates the CNN’s neurones:

How do we know what neural networks actually do?
Another method: Class Activation Mapping (CAM) and numerous derivatives

Requires the use of Global Average Pooling (GAP)

 Not as general as LRP

B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning Deep Features for Discriminative Localization. CVPR'16 (arXiv:1512.04150, 2015).

How do we know what neural networks actually do?

Visualising RNN neurones’ activations:

Prediction: 5 most
likely options for
the next character

Activation of one neuron: blue → weak (-1), green → strong (+1)

How do we know what neural networks actually do?
Ideal images that maximally activate a given CNN neurone for different classes:

K. Simonyan, A. Vedaldi, A. Zisserman: Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Map. ICLR Workshop 2014
A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox, J. Clune: Synthesizing the preferred inputs for neurons in neural networks via deep generator networks. NIPS 2016

The next (foreseeable) big developments in AI…

• Explainable neural networks

• Physics inspired neural networks

• Hybrid data- and knowledge-driven models

