A general introduction to machine-learning and deep learning methods

Adeline Paiement, LIS lab, University of Toulon

Introducing myself...

2016-2018: Research lecturer

Department of Computer Science, Visual Computing research group

• IA for (physical) sciences

2013-2016 : Postdoc

Machine learning

Internet-of-things

Computer vision

Medical image analysis

SCISYS **2008-2009** : Developer

- Robotics
- Computer vision
- Mars exploration rover

2008: Engineering degree + astrophysics MSc

2018 - : Maître de conférences

- Laboratoire d'Informatique et des Systèmes (LIS), pôle Science des Données
- Al for (physical) sciences

Outline:

- Introduction to machine learning
 - Unsupervised learning
 - Supervised learning
 - Example application to classifying images
 - Training in practice
- Neural networks and deep learning
 - Introduction to neural networks and deep learning
 - Application to images

A deluge of data

A deluge of data

Fact: The amount of data we produce increases exponentially

Data-oriented statistical model: perceived as a solution when:

- Weak or non-existing prior knowledge to build a mathematical/physics model that is robust to all possible noise and transformations
- Plenty of data available
- Complex relationship between raw input data and the information to be extracted

Statistical machine learning algorithms have increased in popularity since the 90s.

Objective: Using a large amount of data to mine/synthetize/index the information contained in the data automatically

Data challenges

- Nature:
 - · images
 - sound
 - text
 - graph
 - sequences
 - •••

- Source:
 - telescopes
 - spectrographs
 - LASER
 - · SONAR
 - accelerometers/gyroscopes
 - Highly integrated complex information systems (smart-cities, flux web, XML, etc...)
 - ...
- Large dimensionality → Curse of dimensionality
- Multi-modal: multiple sensors with various properties, not necessarily pre-aligned nor synchronised
- Defects:
 - Measurement noise, outliers
 - Missing values
 - ...

Generic data processing pipeline

Generic data processing pipeline

The data

The problem

Four main types of problems

☐ Association pattern mining

Finding patterns in the data

☐ Clustering

Identifying groups with similar properties

☐ Classification

Associating objects with predefined classes

□ Outlier detection

Finding objects/patterns which do not match the rest of the dataset

Note: there are usually multiple ways to tackle a same problem

Four main types of problems

☐ Clustering

Identifying groups with similar properties

Clustering (pixel) values

Clustering observations (images, spectra...)

Four main types of problems

☐ Classification

Associating objects with predefined classes

"Which kind of bird is it?"

Which pixels belong to the dog? \rightarrow Segmentation

Main machine learning tasks

- ☐ Unsupervised learning
 - Only input data is available. No labels.
- ☐ Supervised learning
 - Each piece of data comes with an annotation \rightarrow typically costly
- ☐ Semi-supervised learning
 - Only part of the dataset is annotated
- **☐** Weakly Supervised learning

For each piece of data, a (simple) annotation is available, but it only contains part of the relevant information

Unsupervised learning

More about this in the next lecture

Main tasks consist in:

Finding groups (clustering)

• Finding a lower-dimensionality representation of the data

• Finding interesting trends in the data

Approximating density functions

Dimensionality reduction / Manifold learning

Aims:

- Project the data in a different space where it is better structured
- Reduce dimensionality
- Identify main modes of variation

Supervised learning

Supervised learning

- Feature selection
- Feature extraction
- Dimensionality reduction

may be first steps of data preparation for a further analysis with supervised learning.

Supervised learning is based on:

Data

<u>and</u>

Annotations / labels → costly

Assumption: The data is **representative** of the process to model

Large image databases

In the last 20 years, the number and size of annotated image databases have increased dramatically

- 100s → several hundred millions image (e.g. ImageNet)
- 10s → several thousands classes
- Annotations at several levels (classes, bounding boxes, contours, etc...)

Some popular image databases: ImageNet, COCO (Common Objects in Context), CIFAR, Pascal VOC, etc...

(Semi-, weakly-, fully-) supervised learning has developed dramatically in computer vision

Example of classification for images

Example task: telling if the image shows a face

Annotation: one scalar label per image

Classification for images

In general, learning is not performed directly on the images, but from **features / descriptors** $X = \{x_1, \dots, x_N\}$:

- Reduction of the dimensionality
- First stage of information extraction

The classification task

- Find the function $h(x): \mathcal{X} \mapsto \mathcal{Y}$ which associates a label y to the feature x. h often has a set of parameters θ : $h(x, \theta)$
- ullet For a new feature $oldsymbol{x} \in oldsymbol{\mathcal{X}}$, use h predict the label $ilde{oldsymbol{y}}$

This task must be achieved from a subset of all possible data samples

Risk and performance

Total risk is defined as:
$$\mathcal{R}_{\boldsymbol{\mathcal{Z}}}(\boldsymbol{\theta}) = \int\limits_{\boldsymbol{x},y \in \boldsymbol{\mathcal{X}} \times \mathcal{Y}} \mathcal{L}(y,h(\boldsymbol{x};\boldsymbol{\theta}))p(\boldsymbol{x},y)d\boldsymbol{x}dy \qquad \qquad z = (\boldsymbol{x},y)$$

with $\mathcal{L}(y, h(x; \theta))$ a **loss function** that measures the **cost** of difference between the model's prediction and the true label y

In practice, p(x,y) is not know, and we can only compute the **empirical risk**:

$$\mathcal{R}_{\boldsymbol{z}}^{N}(\boldsymbol{\theta}) = \sum_{i=1}^{N} \mathcal{L}(y_i, h(\boldsymbol{x}_i; \boldsymbol{\theta})), \ \boldsymbol{x}_i \in \boldsymbol{X}, y_i \in Y.$$

Training of the classifier:

Optimisation (e.g. gradient descent) on minimizing the empirical risk

Problem: we only have finite number of data samples in our dataset

→ How do we know that the empirical risk is **representative** of the real risk?

Problem: we only have finite number of data samples in our dataset

→ How do we know that the empirical risk is **representative** of the real risk?

It can be shown that for a sufficiently large dataset:

- the empirical risk tends towards the real risk
- the model's parameters θ tend towards the optimal model parameters
- → How large is large enough?

If we divide our dataset into two subsets

It can be shown that:

- the empirical risk *computed on the test set* tends towards the real risk
- the model's parameters θ , learnt on the training set, tend towards the optimal model parameters
- → We can test **generalisation**
- → How large is large enough?

In practice, the empirical risk on the test set is an **estimator** of the real risk

If we divide our dataset into two subsets

Caveats:

If the test set is too small or badly chosen, the empirical risk deviates from the real risk

Some (very recommended) solutions:

• Random sampling:

• Averaging over several trainings:

$$\mathcal{R}_{\boldsymbol{z}}(\widehat{\boldsymbol{\theta}}^{N_1}) \approx \frac{1}{K} \sum_{i=1}^{K} \mathcal{R}_{\overline{\boldsymbol{z}}}^{N_2, i}(\widehat{\boldsymbol{\theta}}^{N_1, i})$$

Better, more systematic approach: K-fold cross validation

Benefits on small datasets:

- All data samples are used (once) for testing
- The training set can be larger
- More folds → smaller bias of the risk estimator (but larger standard deviation)

For very small datasets: Leave-one-out cross validation

Benefits on small datasets:

- Same as K-fold cross validation +
- Maximises the training set size

Cons:

Lots of computations for training

Training and model selection

In addition to optimising the θ parameters of the model, several algorithms need to optimise hyper-parameters: choice of model

Examples:

- Neural networks: numbers of layers and neurons
- SVM: regularisation constant
- Kernel-SVM: regularisation constant, parameters of the kernel

Never optimise these hyper-parameters on the same training set as the model's parameters θ

Training and model selection

Three subsets are needed:

Proceed in 7 steps:

- 1. Divide the dataset into training, testing, and validation sets
- 2. Pick a model (e.g. architecture of neural network)
- 3. Train the model on the training set
- 4. Evaluate the model on the validation set
- 5. Repeat steps 2 to 4 with several models / architectures
- 6. Select the best performing model
- 7. Do a classic K-fold cross validation with the training and testing sets

Optimisation of the hyper-parameters

Optimisation of the parameters

Empirical risk minimisation

The more complex the model, the higher the risk of **over-fitting**

Empirical risk minimisation

When the classifier's memory increases, it relies more on memory and it becomes harder to classify unknown samples. It's ability to generalise decreases.

Empirical risk minimisation

2 common solutions:

- Stop training when the error computed on an additional validation set starts increasing
- "Early stopping": stop training while the testing error is still decreasing a bit

Unbalanced datasets

A very common problem with real world datasets!

- A very important problem to consider:
 - Overfitting to the common class
 - Ignoring the rare class
- Possible solutions:
 - Getting more data
 - Re-sampling (stratified sampling, over-sampling)
 - Generate synthetic samples?
 - Try different algorithms
 - Try a different perspective (outlier detection? Optimising a different cost?)

Data augmentation

Data augmentation

Measuring the performance of a binary classifier

Standard measures:

• Precision =
$$\frac{TP}{TP+FP}$$
• Recall = $\frac{TP}{TP+FN}$

How many selected items are relevant?

How many relevant items are selected?

Recall = $\frac{TP}{TP+FN}$

- F1-score: combines the previous two
- Accuracy: biased on unbalanced data, avoid it
- Etc.

ROC curve

Standard way to presenting performance measures for a binary classifier

- True positive rate (sensitivity) as a function of false positive rate (1 specificity)
- Area under curve (AUC) measures the difference to a random classifier (AUC = 0.5)

Where can we find learning algorithms?

Python

Nowadays the standard language for data mining and machine learning

Libraries:

- SciKit-Learn: many supervised and unsupervised algorithms
- PyTorch: Most popular frameworks for deep learning
 - including high-level wrapper such as PyTorch Lightning

Neural networks and deep learning

Generic data processing pipeline

Generic data processing pipeline

Deep learning version:

Integrates the feature extraction and reduction steps into the learning

"In-the-box" feature extraction

• Classical computer vision:

• Computer vision with deep learning:

"In-the-box" feature extraction

How do neural networks work?

Supervised learning scenario:

Find the function $h(x): \mathcal{X} \mapsto \mathcal{Y}$ which associates a label y to the data sample x.

- *h* is implemented by a set of neurones, organised into layers
- θ are the parameters of the neurones

• h and its parameters θ are optimised by gradient descent to minimize an empirical risk

Neural network are "normal" machine learning algorithms

How do neural networks work?

What is a neurone?

A neuron as an edge detector

This is only an example of what could trigger a neuron!

Triggering of a neuron

Some activation functions

What is a neurone?

How to train a neural network

- Minimisation of the empirical risk $\mathcal{R}^N_{m{z}}(m{ heta}) = \sum_{i=1}^N \mathcal{L}(y_i, h(m{x}_i; m{ heta})), \; m{x}_i \in m{X}, y_i \in Y.$
- Choice of loss function:
 - For classification:
 - (Binary) Cross Entropy loss ("softmax")
 - Negative Log Likelihood loss
 - Margin loss
 - Soft Margin loss
 - Kullback Leibler (KL) Divergence
 - Etc.
 - For regression:
 - Euclidean error
 - Mean Absolute error
 - Mean Squared Error (Quadratic loss)
 - Mean Squared Logarithmic Error
 - Etc.

• For autoencoders:

- Absolute loss
- Mean Square loss
- Smooth Absolute loss
- Etc.

How to train a neural network

Procedure for training by gradient descent:

• Gradual and iterative updates

• Smoothed by the use of batches

Autoencoders

Possible uses: data reduction, denoising...

Recurrent neural networks

Used for sequences of data (e.g. temporal series)

Transformers

Used for sequences of data, may be adapted to visual data Self-attention modules capture relationships within the data

Convolutional neural networks (CNNs)

Used for images

Convolution operation

Same filter (neuron) applied to **all spatial locations** → translational invariance, and fewer parameters to learn

Pooling operation

Max pooling

Average pooling

- \square Reduce the number of parameters \rightarrow makes the training faster and help reduce overfitting
- ☐ Introduce invariance to translation
- ☐ May introduce other invariances, e.g. to rotation

• AlexNet: historical **classification** on ImageNet

2 branches for 2 GPUs

• Faster-RCNN: **detection** task

The feature map is used for 2 tasks

• Mask-RCNN: detection and segmentation

The feature map is used for 3 tasks

• YOLO: fast and lightweight **detection**

Multi-task neural networks

Shared feature map → features need to have more meaning

How should we interpret the predictions?

Classification layers: Predict the most likely **class**

The output is not necessarily a probability!

Cross-entropy loss:

Computed on softmax outputs which are between 0 and 1 and are often interpreted as a pseudo-probability distribution

Negative Log Likelihood loss:

Measures the accuracy if the model tries to output a probability for each class

Cosine proximity:

Compares two vectors, e.g.
$$\begin{bmatrix} \sim 0 \\ \sim 1 \\ \sim 0 \end{bmatrix}$$
 and $\begin{bmatrix} \sim 1 \\ \sim 0 \\ \sim 0 \end{bmatrix}$

Hinge loss (max margin):

Compares the signs of the output and true label

Remember:

- We don't have all the possible data in the world
- Data may be noisy, uncertain
- → Strong generalisation testing
- \rightarrow and...?

How much can we trust these "end-to-end" trained black-box algorithms?

Biased data → biased models!

Adversarial examples

Adversarial examples

Like optical illusions for CNNs...

Visualising what activates the CNN's neurones: Layer-wise Relevance Propagation (LRP)

blue color: evidence against prediction

(Binder et al., ICML Visualization Workshop, 2016)

GoogleNet focuses on faces of animals → suppresses background noise, but doesn't use context

Visualising what activates the CNN's neurones:

Another method: Class Activation Mapping (CAM) and numerous derivatives

Class activation maps of top 5 predictions

Class activation maps for one object class

Requires the use of Global Average Pooling (GAP)

Not as general as LRP

Visualising RNN neurones' activations: Activation of one neuron: blue \rightarrow weak (-1), green \rightarrow strong (+1) Prediction: 5 most likely options for Tvdryz cou the next character v a o d a e t hAeovel e o o y & & m C o e r o n e o m I c C : a f Dr usu] I

T C o m m g d 1

Ideal images that maximally activate a given CNN neurone for different classes:

The next (foreseeable) big developments in Al...

Explainable neural networks

- Physics inspired neural networks
- Hybrid data- and knowledge-driven models