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→ “Toward	a	robust	physical	and	chemical	characterization	of	heterogeneous	lines	of	sight” A&A, 692, A160 (2024)

We have multi-species observations:

Context. Estimation of kinetic temperature and volume density in a molecular cloud (GMC) from observed spectra.
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Measurement model 𝑚 𝜃 : radiative transfer model
𝜃: 𝐶𝑉, FWHM, 𝑇kin, 𝑛H2, … 
𝑐 & 𝑏	: multiplicative and additive noise

How to find 𝜃 from 𝑥 knowing 𝑚 and 
some statistical properties on 𝑐 & 𝑏?𝑥 = 𝑐.𝑚 𝜃 + 𝑏



A problem for astrophysicists: how to find the best 𝜃 estimates ?
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Measurement model: 𝑥 = 𝑐.𝑚 𝜃 + 𝑏

When the measurement model does not matches reality, 𝜃true may not exist.

Since 𝑐 & 𝑏 are unpredictable, they are considered as realization of random variables.

→ 𝑥	is also a realization of random variable noted 𝑋.

Let’s note 𝜃true the “true” value of the parameter 𝜃.

From an observation 𝑥, one defines an estimator of 𝜃 noted :𝜃, which is a function of 𝑥: :𝜃(𝑥) ≈ 𝜃true

The probability density function (pdf) of 𝑋 is named the true pdf. It is noted 𝑝 and is inaccessible.

Based on physical assumptions on 𝑐 & 𝑏, one can have a probabilistic model for 𝑋 noted 𝑞$(𝑥; 𝜃).

If the probabilistic model 𝑞$(𝑥; 𝜃true) is a good approximation of the true pdf 𝑝, then the distribution of :𝜃 𝑋 − 𝜃true
characterizes the estimation error. Its mean is the bias, its standard deviation is the precision (also the of error bar of :𝜃 𝑋 ).

→ How to build :𝜃(𝑥)?



1. Moment estimator: one replaces the theoretical mean of 𝑋 noted 𝐸 𝑋 by the empirical mean !
%
∑& 𝑥&. If 𝐸 𝑋 ≈ 𝑚(𝜃) and 

𝑚 is inversible, then :𝜃'(')*+(𝑥!, 𝑥,, … , 𝑥%) = 𝑚-! !
%
∑& 𝑥& . Pros: simple (no fit required). Cons: 𝑚 needs to be inversible.

2. Weighted Least Square estimator: :𝜃./0(𝑥!, 𝑥,, … , 𝑥%) = argmin
1
∑&

!
2!"
(𝑥& − 𝑚&(𝜃)),. Pros: 𝑚 does need to be inverted.  

Cons: it may requires in iterative technique (e.g. Newton Raphson) to find the arg	min.

3. Maximum Likelihood estimator: one assumes that (𝑥&)& are independent realizations of 𝑋 distributed along 𝑞$(𝑥; 𝜃)

:𝜃3/4(𝑥!, 𝑥,, … , 𝑥%) = argmax
1

∏& 𝑞$(𝑥&; 𝜃). Pros. It takes into account the noise distribution. When 𝑞 is gaussian → case 2.

4. Bayesian estimator: 𝜃 is also considered as a random variable. This allows one to add an a priori knowledge on 𝜃 through its 

pdf π(𝜃) → regularization of the solution. Pros : allows one to decrease the variance of estimator and to compute its pdf. 

Cons. Needs an a priori, computation and memory intensive. → see P. Palud’s lecture on Bayesian estimation.

5. Machine Learning regression. One trains a generic algorithm (e.g. NN) to learn how to go from 𝑥 to 𝜃. Pros : does not require 

any physical knowledge on either 𝑚(𝜃) or the noise. Cons. Needs training on already labelled data and there remains 

uncertainty on generalization performances. → see A. Paiement & D. Baron’s lectures on Machine Learning.

Remark: the best technique is problem dependent. In particular, it depends on the knowledge you have.

How to build "𝜃(𝑥)? Several possible techniques
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Instead of implementing all possible estimators to select the most efficient (which would require Monte Carlo simulations to 

analyze their performance), I consider 2 alternatives which are independent of the choice of the estimator:

1. Informative measures -> measure dependance between observation and parameters of interest.

2. Performances bounds -> accuracy of the system (without any estimator).
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Data are encoded to optimize the communication

Information theory (Shannon, 1945).
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Data are encoded to optimize the communication

Information theory (Shannon, 1945).
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Let’s consider 𝑋 a source with 𝐾 possible messages 𝑎!, 𝑎", … , 𝑎#

Example for 𝐾 = 5

Remember:	𝐸 ℎ(𝑋) = ∑5 ℎ(𝑎5)𝑃5
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Data are encoded to optimize the communication

Information theory (Shannon, 1945).

Shannon’s theorem?

On average, the minimum code length is equal to the (Shannon) entropy 𝐻 𝑋 = −∑$%!& 𝑃$ log2𝑃$= 1.95
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Data are encoded to optimize the communication

Information theory (Shannon, 1945).

⇒ lossless encoding -> internet -> iPhone -> IoT -> …
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What is the relation with astrophysics?



Astrophysicists of the ISM want to “understand” 
what is going in Giant Molecular Clouds (GMC).

Giant Molecular Cloud

n ≈ nH2 ∈ [102 106] cm-3 

Tkin ∈ [3 100] K 

What do I mean by “understand” ? 
Being able to describe as simply as possible the observed data, 
to characterize the star formation process.

We (the receiver) observe 𝑌 (e.g. molecular lines) 

and we want to recover the information 𝑋 (e.g. the density of the GMC) emitted by the GMC

Data are encoded to optimize the communication

Information theory (Shannon, 1945).

NOEMA, 
ALMA, 
JWST,
…
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Entropy, a fruitful concept : statistical physics (1870), communication (1945), data science

Let’s consider 𝑋 a discrete random variable whose values are in {𝑎!, 𝑎,, … , 𝑎7} and 𝑃5 = Pr 𝑋 = 𝑎5

Let’s consider 𝑠% = {𝑥!, 𝑥,, … , 𝑥%} a sample of 𝑁 independent and identically distributed (i.i.d.) realizations of 𝑋

𝑥[, 𝑥\, 𝑥], 𝑥^, … , 𝑥_

(𝑎[, 𝑎\, … , 𝑎`)



7

Entropy, a fruitful concept : statistical physics (1870), communication (1945), data science

Let’s consider 𝑋 a discrete random variable whose values are in {𝑎!, 𝑎,, … , 𝑎7} and 𝑃5 = Pr 𝑋 = 𝑎5

If ∃𝑘8, 	𝑃5!= 1, then 𝑥! = 𝑥, = ⋯ = 𝑥% = 𝑎58 ⇒ 	𝑀% = 1 and 𝐻 = 0.

If ∀𝑘, 𝑃5=
!
7

, then 𝑀% = 𝐾% 	and 𝐻 = log, 𝐾.

Let’s consider 𝑠% = {𝑥!, 𝑥,, … , 𝑥%} a sample of 𝑁 independent and identically distributed (i.i.d.) realizations of 𝑋

On average, what is 𝑀% number of distinct samples 𝑠% that are generated?

(𝑎j')
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=> Entropy characterizes the uncertainty of X → maximum of entropy = maximum of uncertainty on the value of 𝑋

Entropy, a fruitful concept : statistical physics (1870), communication (1945), data science
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Entropy characterizes the uncertainty of 𝑋

Take home message:

next

Statistical moment 𝐻 𝑋 = −∑'()* 𝑃' log2𝑃' = −𝐸 log2 P 𝑋

Remember:	𝐸 ℎ(𝑋) = ∑5 ℎ(𝑎5)𝑃5



Can we define the entropy of 𝑋? 

Entropy = −𝐸 log P 𝑋

Consider 𝑋 is a continuous random variable with probability density function (pdf) 𝑝 𝑥 .
𝑝 𝑥 ∆

𝑥

(resolution)

∫ 𝑝 𝑥 dx = 1

𝑃5 = ∆	𝑝(𝑥5)

∑5 𝑃5 ≈ 1	

−∑5=!7 𝑃5 log2𝑃5 = −∑5=!7 ∆	𝑝(𝑥5) log2∆	𝑝(𝑥5) = −∑5=!7 ∆	𝑝(𝑥5) log2 𝑝(𝑥5) −log2∆

lim∆→8−∑5=!7 𝑃5 log2𝑃5 = −∫ 𝑝 𝑥 log2 𝑝 𝑥 dx − log2(∆) = +∞
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Uniform distribution

Entropy = −𝐸 log P 𝑋

𝑋	~	𝒰	[𝑎, 𝑏]

𝑎 𝑏 Ex: (continuous) uniform distribution ℎ 𝑋 = log2(𝑏 − 𝑎), 

Quantifying with 𝐾 bins ⇒ (discrete) equiprobable distribution 𝑃5 =
!
7
⇒ 𝐻 𝑋∆ = log 𝐾

∆= @-A
7
⇒ 𝐻 𝑋∆ + log2	∆	=
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lim∆→8−∑5=!7 𝑃5 log2𝑃5 = −∫ 𝑝 𝑥 log2 𝑝 𝑥 dx − log2(∆) = +∞

8
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Ex: (continuous) uniform distribution ℎ 𝑋 = log2(𝑏 − 𝑎), 

Quantifying with 𝐾 bins ⇒ (discrete) equiprobable distribution 𝑃5 =
!
7
⇒ 𝐻 𝑋∆ = log 𝐾

∆= @-A
7
⇒ 𝐻 𝑋∆ + log2	∆	= log 𝐾 + log2

@-A
7
= log2(𝑏 − 𝑎) = ℎ 𝑋 (as expected)

Uniform distribution

Entropy = −𝐸 log P 𝑋

𝑎 𝑏

𝑋	~	𝒰	[𝑎, 𝑏]

⟹ ℎ 𝑋 is equivalent to an entropy 𝐻 𝑋 up to an offset given by log2(∆)

Can we define the entropy of 𝑋?

Consider 𝑋 is a continuous random variable with probability density function (pdf) 𝑝 𝑥 .

→	We define ℎ 𝑋 = −∫ 𝑝 𝑥 log2 𝑝 𝑥 dx = −𝐸 log 𝑝 𝑋 	→ differential entropy.

Let 𝑋∆ be a quantified version of 𝑋, ℎ 𝑋 ≈ lim∆→8 𝐻 𝑋∆ + log2(∆)

−∑5=!7 𝑃5 log2𝑃5 = −∑5=!7 𝑃5 log2∆	𝑝(𝑥5) = −∑5=!7 ∆	𝑝(𝑥5) log2 𝑝(𝑥5) −log2∆

lim∆→8−∑5=!7 𝑃5 log2𝑃5 = −∫ 𝑝 𝑥 log2 𝑝 𝑥 dx − log2(∆) = +∞

8
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Normal distribution

Entropy = −𝐸 log P 𝑋

<latexit sha1_base64="G0vasglyY4B31x2LKGK/SEU9lLg="></latexit>

2ω

𝑋	~𝒩(𝜇, 𝜎,)

Ex: Gaussian distribution 𝑋	~𝒩(𝜇, 𝜎,)
where 𝜇 = 𝐸(𝑋) and 𝜎, = var(𝑋)

Can we define the entropy of 𝑋?

Consider 𝑋 is a continuous random variable with probability density function (pdf) 𝑝 𝑥 .

→	We define ℎ 𝑋 = −∫ 𝑝 𝑥 log2 𝑝 𝑥 dx = −𝐸 log 𝑝 𝑋 	→ differential entropy.

Let 𝑋∆ be a quantified version of 𝑋, ℎ 𝑋 ≈ lim∆→8 𝐻 𝑋∆ + log2(∆)

−∑5=!7 𝑃5 log2𝑃5 = −∑5=!7 𝑃5 log2∆	𝑝(𝑥5) = −∑5=!7 ∆	𝑝(𝑥5) log2 𝑝(𝑥5) −log2∆

lim∆→8−∑5=!7 𝑃5 log2𝑃5 = −∫ 𝑝 𝑥 log2 𝑝 𝑥 dx − log2(∆) = +∞
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Normal distribution

<latexit sha1_base64="yWUnekzYIfDWDzuybqUn70qr4VM="></latexit>µ

ℎ 𝑋 =
1
2
log, 2𝜋𝑒𝜎,

→ In the Gaussian case, ℎ 𝑋 is a function of the standard deviation 𝜎.

Entropy = −𝐸 log P 𝑋
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2ω

𝑋	~𝒩(𝜇, 𝜎,)

Ex: Gaussian distribution 𝑋	~𝒩(𝜇, 𝜎,)
where 𝜇 = 𝐸(𝑋) and 𝜎, = var(𝑋)

Can we define the entropy of 𝑋?

Consider 𝑋 is a continuous random variable with probability density function (pdf) 𝑝 𝑥 .

→	We define ℎ 𝑋 = −∫ 𝑝 𝑥 log2 𝑝 𝑥 dx = −𝐸 log 𝑝 𝑋 	→ differential entropy.

Let 𝑋∆ be a quantified version of 𝑋, ℎ 𝑋 ≈ lim∆→8 𝐻 𝑋∆ + log2(∆)

−∑5=!7 𝑃5 log2𝑃5 = −∑5=!7 𝑃5 log2∆	𝑝(𝑥5) = −∑5=!7 ∆	𝑝(𝑥5) log2 𝑝(𝑥5) −log2∆

lim∆→8−∑5=!7 𝑃5 log2𝑃5 = −∫ 𝑝 𝑥 log2 𝑝 𝑥 dx − log2(∆) = +∞

8



Entropy = −𝐸 log P 𝑋

Mixture of 2 Gaussians

Blue and red distributions: 
same mean 𝜇 & standard deviation 𝜎
but different entropy ℎ(𝑋)

→ ℎ 𝑋 characterizes the uncertainty in a different way than the standard deviation.

→ In the Gaussian case, ℎ 𝑋 is a function of the standard deviation 𝜎.

<latexit sha1_base64="yWUnekzYIfDWDzuybqUn70qr4VM="></latexit>µ

ℎ 𝑋 =
1
2
log, 2𝜋𝑒𝜎,

Normal distribution

<latexit sha1_base64="G0vasglyY4B31x2LKGK/SEU9lLg="></latexit>

2ω

𝑋	~𝒩(𝜇, 𝜎,)
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Mixture of 2 Gaussians Von-Mises distribution

Invariant by circular translation

→ ℎ 𝑋 characterizes the uncertainty in a different way than the standard deviation.

→ In the Gaussian case, ℎ 𝑋 is a function of the standard deviation 𝜎.

<latexit sha1_base64="yWUnekzYIfDWDzuybqUn70qr4VM="></latexit>µ

ℎ 𝑋 =
1
2
log, 2𝜋𝑒𝜎,

Normal distribution

−𝜋 𝜋

Entropy = −𝐸 log P 𝑋

<latexit sha1_base64="G0vasglyY4B31x2LKGK/SEU9lLg="></latexit>

2ω

𝑋	~𝒩(𝜇, 𝜎,)

Blue and red distributions: 
same mean 𝜇 & standard deviation 𝜎
but different entropy ℎ(𝑋)
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Entropy characterizes the uncertainty of 𝑋

Take home messages:

Entropy 𝐻 𝑋 = −𝐸 log2 P 𝑋

next

What is the information on 𝑋 provided by a measurement 𝑌 ?



What is the information on 𝑋 provided by a measurement 𝑌?

Example: 𝑌 = 𝐴 asinh (𝑋 − 𝑚)/𝐵 + 𝑁

Because the observation (𝑌) has some unpredictable contribution, we assume the presence of an additive noise (𝑁)

Let’s consider a physical quantity of interest 𝑋 (e.g. column density) and a given observation 𝑌(e.g. integrated intensity)

9



Example: 𝑌 = 𝐴 asinh (𝑋 − 𝑚)/𝐵 + 𝑁

Concerning X, we know its bounds

→ 𝑋	~	𝒰	[20,24]

20 24

Because the observation (𝑌) has some unpredictable contribution, we assume the presence of an additive noise (𝑁)

Let’s consider a physical quantity of interest 𝑋 (e.g. column density) and a given observation 𝑌(e.g. integrated intensity)

9

What is the information on 𝑋 provided by a measurement 𝑌?



Example: 𝑌 = 𝐴 asinh (𝑋 − 𝑚)/𝐵 + 𝑁

Concerning X, we know its bounds

→ 𝑋	~	𝒰	[20,24]

20 24

Because the observation (𝑌) has some unpredictable contribution, we assume the presence of an additive noise (𝑁)

Let’s consider a physical quantity of interest 𝑋 (e.g. column density) and a given observation 𝑌(e.g. integrated intensity)

Concerning N, we know its mean (0) and its variance 𝜎,

→ 𝑁	~	𝒩(0, 𝜎,)

<latexit sha1_base64="G0vasglyY4B31x2LKGK/SEU9lLg="></latexit>

2ω

0

9

What is the information on 𝑋 provided by a measurement 𝑌?



Example: 𝑌 = 𝐴 asinh (𝑋 − 𝑚)/𝐵 + 𝑁

Concerning X, we know its bounds

→ 𝑋	~	𝒰	[20,24]

20 24

Because the observation (𝑌) has some unpredictable contribution, we assume the presence of an additive noise (𝑁)

Let’s consider a physical quantity of interest 𝑋 (e.g. column density) and a given observation 𝑌(e.g. integrated intensity)

Concerning N, we know its mean (0) and its variance 𝜎,

→ 𝑁	~	𝒩(0, 𝜎,)

<latexit sha1_base64="G0vasglyY4B31x2LKGK/SEU9lLg=">AAACynicjVHLSsNAFD2Nr/quunQTLIKrkhSpLotuXLioYB/QFkmm0zo0LyYToRR3/oBb/TDxD/QvvDOmoBbRCUnOnHvOnbn3+kkgUuU4rwVrYXFpeaW4ura+sbm1XdrZbaVxJhlvsjiIZcf3Uh6IiDeVUAHvJJJ7oR/wtj8+1/H2HZepiKNrNUl4P/RGkRgK5imi2tVeKkahd1MqOxXHLHseuDkoI1+NuPSCHgaIwZAhBEcERTiAh5SeLlw4SIjrY0qcJCRMnOMea+TNSMVJ4RE7pu+Idt2cjWivc6bGzeiUgF5JThuH5IlJJwnr02wTz0xmzf6We2py6rtN6O/nuUJiFW6J/cs3U/7Xp2tRGOLU1CCopsQwujqWZ8lMV/TN7S9VKcqQEKfxgOKSMDPOWZ9t40lN7bq3nom/GaVm9Z7l2gzv+pY0YPfnOOdBq1pxa5Xa1XG5fpaPuoh9HOCI5nmCOi7QQNNU+YgnPFuXlrQm1vRTahVyzx6+LevhA3WAkes=</latexit>

2ω

0

Let’s compare the uncertainty on 𝑿 before and after the measurement of 𝒀.

9

What is the information on 𝑋 provided by a measurement 𝑌?



Example: 𝑌 = 𝐴 asinh (𝑋 − 𝑚)/𝐵 + 𝑁

Concerning X, we know its bounds

→ 𝑋	~	𝒰	[20,24]

20 24

Because the observation (𝑌) has some unpredictable contribution, we assume the presence of an additive noise (𝑁)

Let’s consider a physical quantity of interest 𝑋 (e.g. column density) and a given observation 𝑌(e.g. integrated intensity)

Concerning N, we know its mean (0) and its variance 𝜎,

→ 𝑁	~	𝒩(0, 𝜎,)
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2ω

0

To compute the entropy, we use 𝑋∆ and 𝑌∆ the quantified version 𝑋 and 𝑌 (with resolution ∆ = 0.004)

9

What is the information on 𝑋 provided by a measurement 𝑌?

Let’s compare the uncertainty on 𝑿 before and after the measurement of 𝒀.



Example: 𝑌 = 𝐴 asinh (𝑋 − 𝑚)/𝐵 + 𝑁

Concerning X, we know its bounds

→ 𝑋	~	𝒰	[20,24]

20 24

Because the observation (𝑌) has some unpredictable contribution, we assume the presence of an additive noise (𝑁)

Let’s consider a physical quantity of interest 𝑋 (e.g. column density) and a given observation 𝑌(e.g. integrated intensity)

Concerning N, we know its mean (0) and its variance 𝜎,

→ 𝑁	~	𝒩(0, 𝜎,)

<latexit sha1_base64="G0vasglyY4B31x2LKGK/SEU9lLg="></latexit>

2ω

0

To compute the entropy, we use 𝑋∆ and 𝑌∆ the quantified version 𝑋 and 𝑌 (with resolution ∆ = 0.004)

For a given observation 𝑌∆ = 𝑏B, the distribution 𝑄5 = Pr 𝑋∆ = 𝑎5|𝑌∆ = 𝑏B 	is called a posteriori distribution.

𝑋∆ is a discrete random variable whose values are in {𝑎!, 𝑎,, … , 𝑎7} and 𝑃5 = Pr 𝑋∆ = 𝑎5

9

What is the information on 𝑋 provided by a measurement 𝑌?

Let’s compare the uncertainty on 𝑿 before and after the measurement of 𝒀.



Measurement model: 𝑌 = 𝐴 asinh (𝑋 − 𝑚)/𝐵 + 𝑁

Before measurement, uncertainty on X?

Since 𝑋	~	𝒰	[20,24]

→ 	ℎ 𝑋 = log2 24 − 20 = 2	bits

𝑄5|B =
DE $∆=A$,G∆=@%

DE G∆=@%
     (Bayes’ formula)

After measurement, uncertainty on X|Y?

We need to estimate

9

What is the information on 𝑋 provided by a measurement 𝑌?



𝑄5|B =
DE $∆=A$,G∆=@%

DE G∆=@%
     (Bayes’ formula)

2D Histogram

Simulations with 

sample of size 1010

Pr 𝑋∆ = 𝑎5 , 𝑌∆ = 𝑏B

Before measurement, uncertainty on X?

Since 𝑋	~	𝒰	[20,24]

→ 	ℎ 𝑋 = log2 24 − 20 = 2	bits

After measurement, uncertainty on X|Y?

We need to estimate

Measurement model: 𝑌 = 𝐴 asinh (𝑋 − 𝑚)/𝐵 + 𝑁

9

What is the information on 𝑋 provided by a measurement 𝑌?



𝑄5|B =
DE $∆=A$,G∆=@%

DE G∆=@%
     (Bayes’ formula)

Pr 𝑌∆ = 𝑏B =�
5=!

7

Pr 𝑋∆ = 𝑎5 , 𝑌∆ = 𝑏B

Pr 𝑋∆ = 𝑎5 , 𝑌∆ = 𝑏B

Before measurement, uncertainty on X?

Since 𝑋	~	𝒰	[20,24]

→ 	ℎ 𝑋 = log2 24 − 20 = 2	bits

After measurement, uncertainty on X|Y?

We need to estimate

Measurement model: 𝑌 = 𝐴 asinh (𝑋 − 𝑚)/𝐵 + 𝑁

9

2D Histogram

Simulations with 

sample of size 1010

What is the information on 𝑋 provided by a measurement 𝑌?



𝑄5|B =
DE $∆=A$,G∆=@%

DE G∆=@%
     (Bayes’ formula)

𝐻 𝑋∆|𝑌∆ = 𝑏B = −�
5=!

7

𝑄5|B log2𝑄5|B

⇒ ℎ 𝑋|𝑌 = 𝑏B ≈ 𝐻 𝑋∆|𝑌∆ = 𝑏B + log2(∆) (∆ = 0.004)

Pr 𝑋∆ = 𝑎5 , 𝑌∆ = 𝑏B

Before measurement, uncertainty on X?

Since 𝑋	~	𝒰	[20,24]

→ 	ℎ 𝑋 = log2 24 − 20 = 2	bits

After measurement, uncertainty on X|Y?

We need to estimate

Measurement model: 𝑌 = 𝐴 asinh (𝑋 − 𝑚)/𝐵 + 𝑁

9

2D Histogram

Simulations with 

sample of size 1010

What is the information on 𝑋 provided by a measurement 𝑌?



𝑄5|B =
DE $∆=A$,G∆=@%

DE G∆=@%
     (Bayes’ formula)

𝐻 𝑋∆|𝑌∆ = 𝑏B = −�
5=!

7

𝑄5|B log2𝑄5|B

⇒ ℎ 𝑋|𝑌 = 𝑏B ≈ 𝐻 𝑋∆|𝑌∆ = 𝑏B + log2(∆) (∆ = 0.004)

Pr 𝑋∆ = 𝑎5 , 𝑌∆ = 𝑏B

For 𝑦 = 4, the entropy goes from 2 to 𝐻 𝑋|𝑌 = 4 = −3.6

Before measurement, uncertainty on X?

Since 𝑋	~	𝒰	[20,24]

→ 	ℎ 𝑋 = log2 24 − 20 = 2	bits

After measurement, uncertainty on X|Y?

We need to estimate

Measurement model: 𝑌 = 𝐴 asinh (𝑋 − 𝑚)/𝐵 + 𝑁

9

2D Histogram

Simulations with 

sample of size 1010

What is the information on 𝑋 provided by a measurement 𝑌?



𝑄5|B =
DE $∆=A$,G∆=@%

DE G∆=@%
     (Bayes’ formula)

𝐻 𝑋∆|𝑌∆ = 𝑏B = −�
5=!

7

𝑄5|B log2𝑄5|B

⇒ ℎ 𝑋|𝑌 = 𝑏B ≈ 𝐻 𝑋∆|𝑌∆ = 𝑏B + log2(∆) (∆ = 0.004)

Pr 𝑋∆ = 𝑎5 , 𝑌∆ = 𝑏B

For 𝑦 = 9, the entropy goes from 2 to 𝐻 𝑋|𝑌 = 9 = −1.2

Before measurement, uncertainty on X?

Since 𝑋	~	𝒰	[20,24]

→ 	ℎ 𝑋 = log2 24 − 20 = 2	bits

After measurement, uncertainty on X|Y?

We need to estimate

Measurement model: 𝑌 = 𝐴 asinh (𝑋 − 𝑚)/𝐵 + 𝑁

9

2D Histogram

Simulations with 

sample of size 1010

What is the information on 𝑋 provided by a measurement 𝑌?



𝑄5|B =
DE $∆=A$,G∆=@%

DE G∆=@%
     (Bayes’ formula)

𝐻 𝑋∆|𝑌∆ = 𝑏B = −�
5=!

7

𝑄5|B log2𝑄5|B

⇒ ℎ 𝑋|𝑌 = 𝑏B ≈ 𝐻 𝑋∆|𝑌∆ = 𝑏B + log2(∆) (∆ = 0.004)

Pr 𝑋∆ = 𝑎5 , 𝑌∆ = 𝑏B

For 𝑦 = 12, the entropy goes from 2 to 𝐻 𝑋|𝑌 = 9 = 0.2

Before measurement, uncertainty on X?

Since 𝑋	~	𝒰	[20,24]

→ 	ℎ 𝑋 = log2 24 − 20 = 2	bits

After measurement, uncertainty on X|Y?

We need to estimate

Measurement model: 𝑌 = 𝐴 asinh (𝑋 − 𝑚)/𝐵 + 𝑁

9

2D Histogram

Simulations with 

sample of size 1010

What is the information on 𝑋 provided by a measurement 𝑌?



𝑄5|B =
DE $∆=A$,G∆=@%

DE G∆=@%
     (Bayes’ formula)

𝐻 𝑋∆|𝑌∆ = 𝑏B = −�
5=!

7

𝑄5|B log2𝑄5|B

Pr 𝑋∆ = 𝑎5 , 𝑌∆ = 𝑏B

By averaging 𝐻 𝑋|𝑌 = ∑B Pr 𝑌 = 𝑏B 𝐻 𝑋|𝑌 = 𝑏B

→ conditional entropy ℎ 𝑋|𝑌 = −𝐸$,G[log2𝑄(𝑋)] ≈ −𝟎. 𝟗	𝐛𝐢𝐭𝐬

Before measurement, uncertainty on X?

Since 𝑋	~	𝒰	[20,24]

→ 	ℎ 𝑋 = log2 24 − 20 = 𝟐	𝐛𝐢𝐭𝐬

After measurement, uncertainty on X|Y?

We need to estimate

Measurement model: 𝑌 = 𝐴 asinh (𝑋 − 𝑚)/𝐵 + 𝑁

9

2D Histogram

Simulations with 

sample of size 1010

What is the information on 𝑋 provided by a measurement 𝑌?



𝑄5|B =
DE $∆=A$,G∆=@%

DE G∆=@%
     (Bayes’ formula)

𝐻 𝑋∆|𝑌∆ = 𝑏B = −�
5=!

7

𝑄5|B log2𝑄5|B

Pr 𝑋∆ = 𝑎5 , 𝑌∆ = 𝑏B

By averaging 𝐻 𝑋|𝑌 = ∑B Pr 𝑌 = 𝑏B 𝐻 𝑋|𝑌 = 𝑏B

→ conditional entropy ℎ 𝑋|𝑌 = −𝐸$,G[log2𝑄(𝑋)] ≈ −𝟎. 𝟗	𝐛𝐢𝐭𝐬

≈ uncertainty that remains in X once Y is observed.

Before measurement, uncertainty on X?

Since 𝑋	~	𝒰	[20,24]

→ 	ℎ 𝑋 = log2 24 − 20 = 𝟐	𝐛𝐢𝐭𝐬

After measurement, uncertainty on X|Y?

We need to estimate

Measurement model: 𝑌 = 𝐴 asinh (𝑋 − 𝑚)/𝐵 + 𝑁

9

2D Histogram

Simulations with 

sample of size 1010

What is the information on 𝑋 provided by a measurement 𝑌?



What is the information on 𝑋 provided by a measurement 𝑌 ?



The difference 𝐼 𝑋; 𝑌 = 𝐻 𝑋 − 𝐻(𝑋|𝑌) is the mutual information

Mutual information

Venn’s diagram quantifies uncertainty with area
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If 𝐻 𝑋 = 𝐻(𝑋|𝑌), then 𝐼 𝑋; 𝑌 = 0 ⇒ 𝑌 provides no information on 𝑋
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The difference 𝐼 𝑋; 𝑌 = 𝐻 𝑋 − 𝐻(𝑋|𝑌) is the mutual information

Mutual information

Venn’s diagram quantifies uncertainty with area

𝐼 𝑋; 𝑌 is a measure of dependance between 𝑋 and 𝑌. 

e.g. 𝐼 𝑋; 𝑌 = 0 ⟺ 𝑋 and 𝑌 are independent.

If 𝐻 𝑋 = 𝐻(𝑋|𝑌), then 𝐼 𝑋; 𝑌 = 0 ⇒ 𝑌 provides no information on 𝑋

𝐼 𝑋; 𝑌 = 𝐸$,G log2
P 𝑋, 𝑌
P 𝑋 P 𝑌

≥ 0 (Symmetric)
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For an environment representative of Orion B, 
one can identify the lines which provides the 
most of information on visual extinction (Av)

This allows:
- to justify observation proposals
- to quantify the intuition of astrophysicists.

* “Quantifying the informativity of emission lines to infer physical conditions in giant molecular clouds” A&A, 691, A109 (2024)

Line ranking based on information content

The computation of the mutual information 
remains challenging*



Mutual information allows to select the informative lines

Entropy characterizes the uncertainty of 𝑋

Take home messages:

Entropy 𝐻 𝑋 = −𝐸 log2 P 𝑋

next

Is there a link with S/N, correlation coefficient, or mean square error?



Gaussian case

The variance of observation 𝑌 is 𝜎I, = 𝑣𝑎𝑟 𝑌 = 𝜎J, + 𝜎&,

Assume 𝑋 and 𝑁 are independent centered random Gaussian variable with 𝑌 = 𝑋 + 𝑁

The pair (𝑋, 𝑌) is a Gaussian random vector with mean 0 and covariance matrix 
𝜎J, 𝜌𝜎J𝜎I

𝜌𝜎J𝜎I 𝜎I,
where 𝜌 if the correlation coefficient between 𝑋 and 𝑌.
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Signal-to-noise ratio 𝑆/𝑁 = 𝜎J,/𝜎&,, where 𝜎J, = 𝑣𝑎𝑟(𝑋) and 𝜎&, = 𝑣𝑎𝑟(𝑁)
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2
log, 1 − 𝜌,

The variance of observation 𝑌 is 𝜎I, = 𝑣𝑎𝑟 𝑌 = 𝜎J, + 𝜎&,

The pair (𝑋, 𝑌) is a Gaussian random vector with mean 0 and covariance matrix 
𝜎J, 𝜌𝜎J𝜎I

𝜌𝜎J𝜎I 𝜎I,
where 𝜌 if the correlation coefficient between 𝑋 and 𝑌.
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𝜌𝜎J𝜎I 𝜎I,
where 𝜌 if the correlation coefficient between 𝑋 and 𝑌.

The mean square error of the “best” estimator �𝑋 is MSE �𝑋 = 𝐸 �𝑋 − 𝑋 2 = 𝜎J, 1 − 𝜌, (-> Bayes’ estimation course)
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finding 𝑌 that minimizes the conditional entropy ⟺ minimizing the mean square error 
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Mutual information allows to select the informative lines

Entropy characterizes the uncertainty of 𝑋

Take home messages:

Entropy 𝐻 𝑋 = −𝐸 log2 P 𝑋

Link with S/N, correlation coefficient & MSE only in Gaussian case

next

How to go from information theory to estimation theory?



From coding to learning

The Maximum Likelihood estimator, :𝜃3/4 = argmax
1

∏& 𝑞$(𝑥&; 𝜃) converges to the solution. Why ?

Let 𝑥!, 𝑥,, … , 𝑥% 	be a sample of independent measurements distributed along the true distribution 𝑝.
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log, 𝑞$(𝑥&; 𝜃) = −𝐸L log,𝑞(𝑋; 𝜃) = ℎ 𝑝, 𝑞Normalized negative-log-likelihood:

Let 𝑥!, 𝑥,, … , 𝑥% 	be a sample of independent measurements distributed along the true distribution 𝑝.

Conclusion? MLE provides the value of 𝜃 that minimizes the coding length (Occam’s Razor)

The Maximum Likelihood estimator, :𝜃3/4 = argmax
1

∏& 𝑞$(𝑥&; 𝜃) converges to the solution. Why ?

Statistical learning: identifying the best representation of the current data allows one to make prediction for future data. 

This is used to introduce model selection techniques (AIC, BIC, MDL, …), but this is only valid asymptotically (N large)
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Mutual information allows to select the informative lines

Entropy characterizes the uncertainty of 𝑋

Take home messages:

Entropy 𝐻 𝑋 = −𝐸 log2 P 𝑋

Relations with S/N, correlation coefficient & MSE only in Gaussian case

Statistical learning can be seen as minimizing the code length

Last

How to select the “best” estimator?



Let x1, x2, …, xN be an i.i.d. sample distributed along 𝑝$(𝑥; 𝜃) and :𝜃 be an eslmator of 𝜃 (i.e. a funclon of x1, x2, …, xN)

For any 𝜃, MSE :𝜃, 𝜃 = 𝐸$ ( :𝜃 − 𝜃), is useful to characterize the accuracy (bias & precision) of :𝜃

How to define the “best” estimator?
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1/ Search for the Uniformly Minimum Variance Unbiased :𝜃P3QP = arg min
M*RSTU)V	O1
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Cramér-Rao (lower) Bound (CRB), for any unbiased estimators,

var( :𝜃) ≥ 1/𝐹(𝜃) where 𝐹 𝜃 = −𝐸$ ∇1
, log 𝑝$(𝑥; 𝜃)

(Fisher information)

If var :𝜃 = !
W 1

⇒ all the information present in the data has been extracted.

Remark. Such an estimator :𝜃 does not always exists. But if he does, then the MLE provides it
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For any 𝜃, MSE :𝜃, 𝜃 = 𝐸$ ( :𝜃 − 𝜃), is useful to characterize the accuracy (bias & precision) of :𝜃

Example: 𝑋 = 𝑚(𝜃) + 𝑁 with 𝑚 𝜃 = 𝐴 asinh (𝜃 − 𝐶)/𝐵
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⇒ bias :𝜃 =	? , var :𝜃 =	? How good is this estimator? Almost perfect.

1/ Search for the Uniformly Minimum Variance Unbiased :𝜃P3QP = arg min
M*RSTU)V	O1

MSE :𝜃, 𝜃
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Example: 𝑋 = 𝑚(𝜃) + 𝑁 with 𝑚 𝜃 = 𝐴 asinh (𝜃 − 𝐶)/𝐵

How to estimate 𝜃	from 𝑋?
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If 𝑋	~	𝒩 𝑚 𝜃 , 𝜎, ⇒ 𝐹 𝜃 = H&(1)
2

,
⇒ var :𝜃 ≥ 2

H&(1)

,
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Monte Carlo simulation for 𝜃 = 21.5
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For any 𝜃, MSE :𝜃, 𝜃 = 𝐸$ ( :𝜃 − 𝜃), is useful to characterize the accuracy (bias & precision)

Problem. :𝜃(N+ = argmin
O1
MSE :𝜃, 𝜃 ∀𝜃 does not exist. What are the solutions?

Cramér-Rao lower bound provides a precision of reference that may confirm that the UMVU is found.

2/ Search for :𝜃'S*S'TY = argmin
O1
max
1

MSE :𝜃, 𝜃

This is the solution of “careful” people (e.g. Meudon PDR emulator by Einig & Palud)

Problems. 
1. Calculations are often impossible to track, i.e. “brut force” may be required.
2. This criterion is not always adapted.

How to define the “best” estimator?

Let x1, x2, …, xN be an i.i.d. sample distributed along 𝑝$(𝑥; 𝜃) and :𝜃 be an eslmator of 𝜃 (i.e. a funclon of x1, x2, …, xN)

1/ Search for the Uniformly Minimum Variance Unbiased :𝜃P3QP = arg min
M*RSTU)V	O1

MSE :𝜃, 𝜃

→ “Neural	network-based	emulation	of	interstellar	medium	models” A&A, 678, A198 (2023) 14
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Calculations are often impossible to track, and this criterion is not necessarily adapted.

3/ When an a prior 𝜋(𝜃) is available, :𝜃ZT[)U = argmin
O1
𝐸1 MSE :𝜃, 𝜃

A prior is necessary and calculation often requires Monte Carlo approach (see P. Palud’s presentation).
Well adapted for data accumulation *

Let x1, x2, …, xN be an i.i.d. sample distributed along 𝑝$(𝑥; 𝜃) and :𝜃 be an eslmator of 𝜃 (i.e. a funclon of x1, x2, …, xN)

1/ Search for the Uniformly Minimum Variance Unbiased :𝜃P3QP = arg min
M*RSTU)V	O1

MSE :𝜃, 𝜃

* Galiano, F. 2018, MNRAS, 476, 1445 15

Cramér-Rao lower bound provides a precision of reference that may confirm that the UMVU is found.



Mutual information allows to select the informative lines

Entropy characterizes the uncertainty of 𝑋

Take home messages:

Entropy 𝐻 𝑋 = −𝐸 log2 P 𝑋

Link with S/N, correlation coefficient & MSE only in Gaussian case

Cramér-Rao (lower) Bound provides a precision of reference

Statistical learning can be seen as minimizing the code length



Precision of the column density as a function of the considered regime in the LTE regime

13CO(2-1) -> 200 GHz 13CO(1-0) & 13CO(2-1)13CO(1-0) -> 100 GHz

The represented CRB of column density allows one to:

1. Quantify in terms of accuracy the gain of observing 2 transitions species -> 1+1 ≫ 2
-> Justify complementary telescope observation in 2022 in Flame nebula.

2. Check the maximum likelihood estimator (MLE) efficiency 
-> If MLE efficient -> provide error bars,

“C18O,13CO, and 12CO abundances and excitation temperatures in the Orion B molecular cloud” A&A, 645, A26 (2020)



Summary

Information theory provides concepts (entropy, mutual information, …) that can be used for line selection. 

CRB are “easy” to compute when a statistical model is available (𝑋	~	𝑝$(𝑥; 𝜃)) and provide precision of reference.

Both are independent of the choice of the estimation techniques.
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A guide when choosing the model complexity

The minimum you can ask your physical model is the residue to be “small”.  However, should you stop?

When the complexity increases, the precision of reference given by the CRB also increases.

It can be computed even before starting to search for an estimator.

Conclusion on information measures

You might find them difficult to interpret, but they are applicable in a wide range of situations. 

-> there remain applications to discover in the interstellar medium.


