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Nice to meet you all!
This 5-yo is Ori

I really like running in 
the nature!



Data science drives astronomical research
❖ Astrophysicists cannot build controlled experiments in the laboratory.

❖ We observe billions of astronomical sources, each is an ongoing 
experiment.

❖ The systems we observe are highly complex, and can be described by 
very different models with many unknown parameters.

The Pillars of Creation.
Credits: J. DePasquale, A. 
M. Koekemoer, A. Pagan 

(STScI).

A galaxy merger. 
Credits: L. Armus & A. 

Evans

The galactic center in radio. 
Credits: I. Heywood & J. C. 

Munoz-Mateos



Data science drives astronomical research
❖ Astrophysicists cannot build controlled experiments in the laboratory.

❖ We observe billions of astronomical sources, each is an ongoing 
experiment.

❖ The systems we observe are highly complex, and can be described by 
very different models with many unknown parameters.

The Pillars of Creation.
Credits: J. DePasquale, A. 
M. Koekemoer, A. Pagan 

(STScI).

A galaxy merger. 
Credits: L. Armus & A. 

Evans

The galactic center in radio. 
Credits: I. Heywood & J. C. Munoz-

Mateos



Data science drives astronomical research
❖ To constrain the large space of possible physical models, we search 

for:

❖ Universal functions: e.g., the initial mass function.

❖ Scaling relations and trends between different properties: e.g., 
Tully-Fisher (L vs. ), Kennicutt-Schmidt (  vs. SFR), and 

 relations.

❖ Classes/clusters: e.g., early vs. late type galaxies, stellar classes.

❖ Outliers: e.g., quasars, super luminous supernovae, fast radio 
bursts.

❖

vrot MH2

MBH − σ
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Data science drives astronomical research

In the emerging field of data science, a central goal is to uncover these patterns 
in complex data. In astronomy, this has been a driving force of progress for 

decades.



New data horizons
❖ We make discoveries when we observe the Universe in a new 

way. 

❖ The blessing of dimensionality: multiple large surveys 
mapping astronomical sources in wavelength and time.

❖ Discovery opportunities now or in the near future (my biased POV!):
❖ Milky Way: Local Volume Mapper + 3D dust maps + multi-band 

2D maps tracing gas, dust, and molecules. 
❖ ISM and nearby galaxies: PHANGS + DGIS + MANGA.
❖ Stars: Milky Way Mapper + Gaia + TESS + 4MOST.
❖ Galaxies and cosmology: Euclid + DESI + Rubin + Roman.
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The combination of data from the different surveys will 
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This lecture: applications of unsupervised machine 
learning algorithms for data exploration and 

discovery in ISM science 
❖ Unsupervised learning: a family of algorithms that do 

not require “ground truth” labels or target variables for 
training. 

❖ Operating directly on the data, they are used for:
❖ Clustering: association of objects in the sample to a (typically 

small) number of groups.
❖ Dimensionality reduction: representing the high-

dimensional dataset in a low dimensional space. Embedding 
into 2D or 3D enables visualization. 

❖ Outlier detection: identification of rare or anomalous 
objects in the sample.



This lecture: applications of unsupervised machine 
learning algorithms for data exploration and 

discovery in ISM science 
❖ Unsupervised learning: a family of algorithms that do 

not require “ground truth” labels or target variables for 
training. 

❖ Operating directly on the data, they are used for:
❖ Clustering: association of objects in the sample to a (typically 

small) number of groups.
❖ Dimensionality reduction: representing the high-

dimensional dataset in a low dimensional space. Embedding 
into 2D or 3D enables visualization. 

❖ Outlier detection: identification of rare or anomalous 
objects in the sample.



This lecture: applications of unsupervised machine 
learning algorithms for data exploration and 

discovery in ISM science 
❖ Unsupervised learning: a family of algorithms that do 

not require “ground truth” labels or target variables for 
training. 

❖ Operating directly on the data, they are used for:
❖ Clustering: association of objects in the sample to a (typically 

small) number of groups.
❖ Dimensionality reduction: representing the high-

dimensional dataset in a low dimensional space. Embedding 
into 2D or 3D enables visualization. 

❖ Outlier detection: identification of rare or anomalous 
objects in the sample.



This lecture: applications of unsupervised machine 
learning algorithms for data exploration and 

discovery in ISM science 
❖ Unsupervised learning: a family of algorithms that do 

not require “ground truth” labels or target variables for 
training. 

❖ Operating directly on the data, they are used for:
❖ Clustering: association of objects in the sample to a (typically 

small) number of groups.
❖ Dimensionality reduction: representing the high-

dimensional dataset in a low dimensional space. Embedding 
into 2D or 3D enables visualization. 

❖ Outlier detection: identification of rare or anomalous 
objects in the sample.



Anatomy of unsupervised algorithms



Anatomy of unsupervised algorithms

Input dataset:
• Raw data (spectra, images, light-curves).
• Extracted features.
• Measured relations between different 

objects (distances, correlations).



Anatomy of unsupervised algorithms

Input dataset:
• Raw data (spectra, images, light-curves).
• Extracted features.
• Measured relations between different 

objects (distances, correlations).

Hyperparameters:
• Tuning parameters of the 

algorithm.
• Can strongly affect the result.
• Traditionally, cannot be optimized 

for.



Anatomy of unsupervised algorithms

Input dataset:
• Raw data (spectra, images, light-curves).
• Extracted features.
• Measured relations between different 

objects (distances, correlations).

Hyperparameters:
• Tuning parameters of the 

algorithm.
• Can strongly affect the result.
• Traditionally, cannot be optimized 

for.

Internal choices / cost function:
• Usually, we cannot control these.
• Strongly affect the result, and define the 

range of possible outputs.



Anatomy of unsupervised algorithms

Input dataset:
• Raw data (spectra, images, light-curves).
• Extracted features.
• Measured relations between different 

objects (distances, correlations).

Hyperparameters:
• Tuning parameters of the 

algorithm.
• Can strongly affect the result.
• Traditionally, cannot be optimized 

for.

Internal choices / cost function:
• Usually, we cannot control these.
• Strongly affect the result, and define the 

range of possible outputs.

Algorithm output: 
• Density distribution.
• Clusters.
• Embedding in low-D space.
• Outliers.



Good Practices
❖ Start simple:

❖ Simulate simple low-dimensional dataset, without noise, where the 
output can be anticipated.

❖ Compare the output of the algorithm for different data representations 
and different choices of hyper-parameters.

❖ Gradually complicate the model: 

❖ Add more dimensions (some of them should be uninformative).

❖ Add noise.

❖ Compare the output for different representations and hyper-parameters. 

❖ Physically-motivated model:

❖ Simulate a physically-motivated dataset.

❖ Experiment with different noise properties, different representations, 
and hyper-parameters.

❖ Try to break the algorithm!



List of topics

❖ Input data sets and distance measures.

❖ Clustering algorithms.

❖ Dimensionality reduction algorithms. 

❖ Outlier detection algorithms.



Input data and distance 
measures



Types of input data

❖ Raw data - data obtained directly from the telescope after 
minimal processing:

❖ Astronomical images in different bands.

❖ Spectra.

❖ Time-series data (can also be in multiple bands).

❖ Features extracted from the raw data.

❖ For stellar spectra: effective temperature, bolometric 
luminosity, metallicity, mass, etc.

❖ For galaxy images: effective radius, Sersic index, 
morphological class (spiral or elliptical), etc.

❖ Relations between the objects: correlation or distance matrix.

The algorithm takes as an input a list of objects with N measured properties. By 
default, each object is considered as a point in an N-dimensional Euclidean space.
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❖ Data quality: Deriving features often involves cleaning the data, improving its 
quality.

❖ Simplicity: Derived features reduce dimensionality, making the task easier and 
more scalable. Using prior knowledge simplifies learning, rather than relying on 
algorithms to rediscover it.

❖ Interpretability: Outputs are easier to understand when based on known, 
derived features. Even if we apply ML to the raw data, interpreting the result will 
require derived features! 

❖ Upper limits and non-detections: cannot be trivially incorporated when 
using derived features.

❖ Potential for new discoveries: Focusing only on known features limits the 
chance of finding unknown patterns.

Raw data vs. derived features
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Data considerations: scaling & normalization
❖ Astronomical observations have physical units, and might have 

different dynamical scales. Features with larger variance will 
dominate the summed Euclidean distance between individual 
objects.

M* = 106 M⊙

Z* = 0.2 Z⊙

M* = 108 M⊙

Z* = 1 Z⊙

M* = 1010 M⊙

Z* = 2 Z⊙D12 = (M1 − M2)2 + (Z1 − Z2)2
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Data considerations: scaling & normalization

❖ What to do? Apply rescaling and normalization to all the features. Use 
the logarithm of the feature as the new feature, and/or normalize using 
the mean and standard deviation of the distribution: .fnorm = ( f − μf )/σf

❖ Astronomical observations have physical units, and might have 
different dynamical scales. Features with larger variance will 
dominate the summed Euclidean distance between individual 
objects.



Data considerations: outliers

❖ Some algorithms are based on the variance within each feature 
and are highly-sensitive to the presence of outliers in the data.

❖ What to do? Use histograms to inspect each feature 
separately and identify and/or remove outliers.



Data considerations: correlated features
❖ A set of highly-correlated features 

in the dataset will result in a 
higher weight in the summed 
Euclidean distance, which may 
wash-out other structures in the 
dataset.

❖ What to do? 

❖ Use PCA-derived features.

❖ Compute feature ratios or 
deviations from scaling 
relations.

❖ Use NN-based dimensionality 
reduction (e.g., auto-encoder).

Lai+(2022)



Data considerations: feature importance
❖ Not all features are equally important:

❖ Some features of the data will not contain important 
information.

HI4PI map HI spectrum 
(taken from Haynes+1998)



Data considerations: feature importance
❖ Not all features are equally 

important:

❖ Important features may carry 
a small weight in terms of 
distance or variance.

Lai+(2022)



Raw data: aspects to consider
❖ Similarly to the derived features case, but depending on the 

data:

❖ Feature scaling and normalization.

❖ Outliers.

❖ Correlated features.

❖ Not all features are equally-important. 

❖ May be beneficial to transform the data into a different space. 
For example:

❖ Frequency domain for time series data.

❖ Wavelet transform for imaging data.

❖ Representation using “eigenvectors” of spectral information.

Example of spectra: Example of time-series:



Distance measures

❖ Euclidean Distance:
❖ The default distance metric assumed in most cases.

❖
All features are equally important: 

❖ The relative order between the different features does not matter!
❖ Other metrics:

❖ Pearson/Spearman correlation coefficient.
❖ KL-divergence.
❖ Earth mover’s distance or energy distance: the relative order of 

the features matters!!.
❖ A list of popular metrics can be found here.

D2
ij = ∑

f:features

(xif − xjf )2

Regardless of whether we want to perform clustering, dimensionality 
reduction, or outlier detection, the large majority of algorithms start by 

estimating the pairwise distance between objects in the N-dimensional space.

https://umap-learn.readthedocs.io/en/latest/parameters.html#metric
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Dimensionality 
reduction algorithms

PCA: Principal Component Analysis
ICA: Independent Component Analysis

NNMF: Non-negative Matrix Factorization
SOM: Self Organizing Maps

tSNE: t-distributed Stochastic Neighbor Embedding
UMAP: Uniform Manifold Approximation and Projection



What is dimensionality reduction?
❖ Dimensionality reduction is the transformation of data 

from a high-dimensional space into a low-dimensional 
space so that the low-dimensional representation retains 
some meaningful properties of the original data.

28 x 28 features per object 2 features per object

feature 1

fe
at

ur
e 

2

dimensionality 
reduction 
algorithm



“Traditional” dimensionality reduction in astronomy
❖ The stellar sequence:



❖ Galaxy spectra: color-magnitude diagram and the BPT 
diagram

Schaw
inski et al. (2014)

HII 
regions

AGN

composites

Trouille et al. (2011)

Color-magnitude diagram BPT diagram

“Traditional” dimensionality reduction in astronomy

https://iopscience.iop.org/article/10.1086/130766


❖ Uncover new trends/correlations.

❖ Data visualization and interpretation.

❖ Look for outliers or interesting objects.

❖ Improve performance of supervised machine learning: 

❖ Original features can be correlated and redundant.

❖ Most traditional algorithms cannot handle thousands 
of features.

❖ Compressing data (e.g., the Square Kilometre Array; 
SKA).

Different use cases
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Two types of outputs

1. Low-dimensional 
embedding of our dataset.

This is a common output of all 
dimensionality reduction algorithms: 
PCA, ICA, NNMF, LLE, SOM, tSNE, 
UMAP, etc.
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2. Prototypes or Eigen-

vectors. 
Along with the low-dimensional 
embedding, this is the output of: 
PCA, ICA, NNMF, and SOM.
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Along with the low-dimensional 
embedding, this is the output of: 
PCA, ICA, NNMF, and SOM.

Can be useful when trying to 
interpret the resulting 

embedding! 



Principal Component Analysis (PCA)
❖ Linear transformation of the input data into a new coordinate system, 

defined by the principle components where the axes (principal 
components) capture the directions of maximum variance. By keeping 
only the top components, PCA reduces dimensionality while preserving 
as much of the data’s variability as possible.

feature 1

fe
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e 

2

principle 

component 1

principle 

component 2



ZTZ = PDP−1
Diagonal matrix containing 

eigenvalues ordered from the largest 
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ei
ge

nv
al

ue
 =

 v
ar

ia
nc

e EV1
EV2

EV3

EV4 EV5 EV6

PC1

PC2

PC3

The matrix of the 
eigenvectors

wavelength [A]
flu

x 
[a

.u
.]

Principal Component Analysis (PCA)



wavelength [A]
flu

x 
[a

.u
.]

ZTZ = PDP−1
Diagonal matrix containing 

eigenvalues ordered from the largest 
to the smallest

index of principle 
component

ei
ge

nv
al

ue
 =

 v
ar

ia
nc

e EV1
EV2

EV3

EV4 EV5 EV6

PC1

PC2

PC3

The matrix of the 
eigenvectors

Principal Component Analysis (PCA)



Each object is a linear combination of the principle 
components.

={a1 ×

, a2 ×

, a3 × }

Now every spectrum is described using 3 numbers, and can be visualized in 3D.

Principal Component Analysis (PCA)



ICA and NNMF

astroML link (very helpful resource!)

https://www.astroml.org/astroML-notebooks/chapter7/astroml_chapter7_Dimensionality_Reduction.html


Self-Organizing Maps (SOM)
❖ Competitive learning: during training, each input adjusts the 

weights of the closest (best-matching) node and its neighbors, 
causing similar inputs to cluster together on the map.

❖ The output is a 2D map of nodes which represent the objects in 
the sample, with properties varying smoothly across the map.



Non-linear dimensionality reduction algorithms
MNIST dataset: 28x28 features per image

From: https://umap-learn.readthedocs.io/

tSNE / 
UMAP

dim 1 (no physical meaning)
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tSNE hyper-parameter variation

The hyper-parameters in t-SNE and UMAP control the balance between local and global 
structure preservation—such as perplexity in t-SNE or number of neighbors and minimum 

distance in UMAP—affecting how tightly points cluster and how the overall layout unfolds.



Be careful when interpreting the 2D maps!

❖ https://distill.pub/2016/misread-tsne/

❖ https://pair-code.github.io/understanding-umap/

https://distill.pub/2016/misread-tsne/
https://pair-code.github.io/understanding-umap/


The Sequencer

Sequencer

Baron & Ménard (2020); arXiv:2006.13948 http://sequencer.org/

http://sequencer.org/


Latent/embedding spaces

Review on Contrastive learning applied to astrophysics: https://arxiv.org/abs/2306.05528

https://arxiv.org/abs/2306.05528


Clustering algorithms



Clustering is a key process in data exploration

❖ Clustering is one of the first steps in data exploration. 
Using clustering, we may try to answer one of the most 
basic questions we can ask — “what is there in my 
dataset?”.

❖ Clustering is the task of grouping objects in the sample, 
such that objects in the same group are more “similar” 
to each other than to objects in other groups.

❖ Scientists, and in particular astronomers, have been 
doing cluster analysis well before they knew how to 
program or knew what Machine Learning is. 



Clusters in astronomy
1. Stellar spectral classes 



Clusters in astronomy
2. Galaxy bimodality 

Taken from: Schawinski et al. (2014)



Clusters in astronomy
3. Supernova classes: type Ia and type II supernovae

By H
. Stevance
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Clustering
From Scikit-learn’s example gallery: see this comparison between algorithms

https://scikit-learn.org/stable/modules/clustering.html


Different types of clustering algorithms
1. Centroid-based / Partition-based clustering (e.g., K-

means): algorithms that divide the data into non-
hierarchical clusters by defining “cluster centers”.

A review paper about classical and modern clustering algorithms can be found here. 

https://link.springer.com/article/10.1007/s40745-015-0040-1


Different types of clustering algorithms
1. Centroid-based / Partition-based clustering (e.g., K-

means): algorithms that divide the data into non-
hierarchical clusters by defining “cluster centers”.

A review paper about classical and modern clustering algorithms can be found here. 

• Scales well with number of 
samples and number of 
features.

• Sensitive to initial conditions 
(may get stuck in a local 
minimum) and outliers.

• Even cluster size, flat 
geometry.

https://link.springer.com/article/10.1007/s40745-015-0040-1


Different types of clustering algorithms

2. Hierarchical clustering: algorithms that create tree of 
clusters by merging close clusters into larger clusters.

A review paper about classical and modern clustering algorithms can be found here. 

https://link.springer.com/article/10.1007/s40745-015-0040-1


Different types of clustering algorithms

2. Hierarchical clustering: algorithms that create tree of 
clusters by merging close clusters into larger clusters.

A review paper about classical and modern clustering algorithms can be found here. 

• Typical examples: BIRCH, 
CURE, ROCK, and 
Chameleon.

• Scales well with number of 
samples and number of 
features.

• Can work with many 
clusters, non-even cluster 
sizes.

https://link.springer.com/article/10.1007/s40745-015-0040-1


Different types of clustering algorithms

3. Density-based clustering: high density regions in the 
data space are considered to belong to the same cluster.

A review paper about classical and modern clustering algorithms can be found here. 

taken from
 here.

https://link.springer.com/article/10.1007/s40745-015-0040-1
https://github.com/chriswernst/dbscan-python


Different types of clustering algorithms

3. Density-based clustering: high density regions in the 
data space are considered to belong to the same cluster.

A review paper about classical and modern clustering algorithms can be found here. 

• Typical examples: DBSCAN, 
OPTICS, and Mean-shift.

• Scales well with number of 
samples. Not so well with 
number of features.

• Uneven cluster sizes, non-flat 
geometries. Marks outliers.

• Struggles with data with 
varying density.

taken from
 here.

https://link.springer.com/article/10.1007/s40745-015-0040-1
https://github.com/chriswernst/dbscan-python


Different types of clustering algorithms
4. Distribution-based clustering: algorithm assumes that data is 

composed of distributions. Same cluster’s data points need to 
belong to the same probability distribution. 

A review paper about classical and modern clustering algorithms can be found here. 

Credit: Jake VanderPlas. 
Tutorial available here.

https://link.springer.com/article/10.1007/s40745-015-0040-1
https://jakevdp.github.io/PythonDataScienceHandbook/05.12-gaussian-mixtures.html


Different types of clustering algorithms
4. Distribution-based clustering: algorithm assumes that data is 

composed of distributions. Same cluster’s data points need to 
belong to the same probability distribution. 

A review paper about classical and modern clustering algorithms can be found here. 

• Typical examples: DBCLASD 
and GMM. Need to assume 
the distribution.

• Does not scale well with the 
number of samples or 
features.

• Flat geometry.

• Assigns probabilities for 
every point.

Credit: Jake VanderPlas. 
Tutorial available here.

https://link.springer.com/article/10.1007/s40745-015-0040-1
https://jakevdp.github.io/PythonDataScienceHandbook/05.12-gaussian-mixtures.html


How should I choose which algorithm to use?
From Scikit-learn’s example gallery: see this comparison between algorithms

https://scikit-learn.org/stable/modules/clustering.html


Outlier detection 
algorithms



What is an outlier?
❖ Bad object: reduction problems, cosmic rays, legos floating 

around the earth… 

❖ Misclassified object: objects that were incorrectly selected 
into our dataset. For example: a star in a sample of quasars, 
variable star accidentally classified as a transient, etc.

❖ Tails of distributions: objects of the same class that show 
extreme values in one of their properties.

❖ Unknown unknowns: objects we did not know we should be 
looking for, and might represent something new and exciting. 



What is an outlier?
❖ Bad object: reduction problems, cosmic rays, legos floating 

around the earth… 

❖ Misclassified object: objects that were incorrectly selected 
into our dataset. For example: a star in a sample of quasars, 
variable star accidentally classified as a transient, etc.

❖ Tails of distributions: objects of the same class that show 
extreme values in one of their properties.

❖ Unknown unknowns: objects we did not know we should be 
looking for, and might represent something new and exciting. 

In astronomy, processes that take place on a shorter timescale will 
appear rare in our datasets.



How can we detect outliers?
1. Measure pair-wise distances between all the objects in the 

sample and identify objects with large distances.

2. Using Supervised Learning algorithms:

-In the framework of a classification task, objects that have a 
relatively-low probability to belong to a class will be 
considered outliers (e.g., Random Forest).

3. Using Unsupervised Learning algorithms:

- Some clustering algorithms (e.g., Hierarchical clustering, 
DBSCAN, OPTICS, GMMs) flag outliers.

-Apply a dimensionality reduction algorithm and identify 
outliers in the low-dimensional representation.
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How can we detect outliers?
1. Measure pair-wise distances between all the objects in the 

sample and identify objects with large distances.

2. Using Supervised Learning algorithms:

-In the framework of a classification task, objects that have a 
relatively-low probability to belong to a class will be 
considered outliers (e.g., Random Forest).

3. Using Unsupervised Learning algorithms:

- Some clustering algorithms (e.g., Hierarchical clustering, 
DBSCAN, OPTICS, GMMs) flag outliers.

-Apply a dimensionality reduction algorithm and identify 
outliers in the low-dimensional representation.



Outlier Detection Algorithms

Taken from scikit-learn.

https://scikit-learn.org/stable/auto_examples/miscellaneous/plot_anomaly_comparison.html


Interpreting the output on unsupervised learning algorithms

Dimensionality Reduction:
• Color by metadata (=derived features) to reveal structure.
• Repeat runs to check stability.
• Compare to original features.

Clustering:
• Validate with known labels or metrics.
• Inspect cluster centers/examples.
• Correlate clusters with physical properties.

Outlier Detection:
• Examine outliers individually.
• Check consistency across methods.
• Use domain knowledge to filter artifacts.



Good Practices
❖ Start simple:

❖ Simulate simple low-dimensional dataset, without noise, where the 
output can be anticipated.

❖ Compare the output of the algorithm for different data representations 
and different choices of hyper-parameters.

❖ Gradually complicate the model: 

❖ Add more dimensions (some of them should be uninformative).

❖ Add noise.

❖ Compare the output for different representations and hyper-parameters. 

❖ Physically-motivated model:

❖ Simulate a physically-motivated dataset.

❖ Experiment with different noise properties, different representations, 
and hyper-parameters.

❖ Try to break the algorithm!



Hands-on application
❖ Hands-on practice on data preparation and unsupervised 

learning algorithms:

❖ Jupyter notebooks with examples and exercises will be 
provided. 

❖ Slides that describe the algorithms in detail will be provided.

❖ No external data is necessary, but you can test on your own 
data! 

❖ Advanced: Hands-on exercise on interacting with a frontier AI 
model on applying an unsupervised ML algorithm to some 
data.

❖ Data: PHANGS multi-wavelength data and derived features 
will be provided, but you are welcome to use your own data!


