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Top notch statistics for the ISM:  
why would you invest time in this?
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More and more observations 

More sensitive instruments


Surveys: large hyperspectral cubes with 
multiple emission lines


With multiple noise sources and large 
range of S/N


Resolved and unresolved environments


Mixing different types of environments

Complex astrophysical simulators 

“Simple” simulators modelling a physical 
aspect (RADEX, chemistry, etc.)


Holistic and very complex simulators 
modelling a specific environment such 
PDRs, Hii regions, dense cores, shock-

dominated regions, etc.


Ex: the Meudon PDD code computes the 
integrated intensity of ~5400 emission 

lines, taking into account eg ~3000 
chemical reactions
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More and more observations 

More sensitive instruments


Surveys: large hyperspectral cubes with 
multiple emission lines


With multiple noise sources and large 
range of S/N


Resolved and unresolved environments


Mixing different types of environments

Complex astrophysical simulators 

“Simple” simulators modelling a physical 
aspect (RADEX, chemistry, etc.)


Holistic and very complex simulators 
modelling a specific environment such 
PDRs, Hii regions, dense cores, shock-

dominated regions, etc.


Ex: the Meudon PDD code computes the 
integrated intensity of ~5400 emission 

lines, taking into account eg ~3000 
chemical reactions

Statistics

(Bayesian inference, 

model selection, 
etc.)

Statistics (unsupervised) Statistics (machine learning, entropy)



Does “Bayesian” matter? Yes
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On Nasa’s Astrophysics Data System (ADS): 


“keyword: statistical” and “abs: Bayesian”


on 15/07/2025


4,855 articles, with exponential growth



Why does it matter?
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Modeling 

Include multiple sources or errors 
(measurement errors such as 

thermal noise or calibration errors, 
model mis-specification, etc.) 


Account for prior information


Inference 

Very natural & statistically 
principled way of formalising an 

inference problem


Manage missing or censored data

Results interpretation 

Natively describe uncertainty on 
single parameters or on multiple 

parameters (variance, covariance,  
credibility intervals)


Marginalise over “nuisance 
parameters”


Evaluate probabilities from 
uncertainty description (including 
model assessment, also called 
posterior predictive checking)



Do I need a degree in statistics  
to use Bayesian methods?
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No, but you need to understand fundamental  
notions of what you are working with.


The goal of this class is to provide

an overview of what can be done with Bayesian inference 

an understanding of the core concepts and main algorithms

some tools that you can use on your own data



Plan and goals of the class

1. Key notions of Bayesian statistics


2. Inference in the ideal case: Conjugate priors


3. Inference in the non-ideal case: Sampling methods


4. Detailing some applications
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Plan Goals: At the end of this class, you should

• Know what the prior, likelihood and posterior are


• Be able to formalise a Bayesian inference task, by 
identifying the main elements


• Implement the Metropolis-Hastings algorithm on a 
simple case, and analyse the inference results


• Know some tools to go further and solve more 
complex problems 



Part 1: Bayesian inference & 
uncertainty quantification
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What kind of problems are we looking at?
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What kind of problem are we interested in?

yθ M

Function evaluation 

Machine learning, with many  pairs 

(eg, constructing an emulator  of )

(θn, yn)
Mψ M

yθ Mψ

Inverse problem

yθ M

Notation 

 : physical parameters


 : observations


 : a map from the 
parameter space to 

observation space (Eg, an 
astrophysical simulator such 

as CLOUDY, RADEX, Meudon 
PDR


 is often called          
“forward model”

θ ∈ Θ

y ∈ 𝒴

M : Θ ↦ 𝒴

M
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What kind of problem are we interested in?

yθ M

Function evaluation 

Machine learning, with many  pairs 

(eg, constructing an emulator  of )

(θn, yn)
Mψ M

yθ Mψ

yθ M

Assume uncertainty on  and .

How to describe those?

y θ

If I have uncertainty on , 

How does it propagate to ?

θ
y

What about uncertainty?

If I have a small dataset, 

how confident should I be 


with my emulator?

If  is affected by noise 

and  Is not invertible, 


what can I say about  ?

y
M

θ

Inverse problem

Notation 

 : physical parameters


 : observations


 : a map from the 
parameter space to 

observation space (Eg, an 
astrophysical simulator such 

as CLOUDY, RADEX, Meudon 
PDR


 is often called          
“forward model”

θ ∈ Θ

y ∈ 𝒴

M : Θ ↦ 𝒴

M
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Conceptually, what does the 
“probability of a random event” quantify?

Random event = an occurence that cannot be 
predicted with certainty


that is, where we don’t know everything with absolute 
precision. This includes deterministic processes with 

limited knowledge of the physics or of the initial 
conditions

Exemples of random events: 


Detecting at least 1 gravitational wave signal next week 


(  Coin toss)


The visual extinction in the Orion Bar nebula is  mag

≃

≥ 10
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Frequentist paradigm Bayesian paradigm

Limit relative 
frequency of 
occurence

Degree of belief in 
occurence

Conceptually, what does the 
“probability of a random event” quantify?

Two different visions of Probability

Exemples of random events: 


Detecting at least 1 gravitational wave signal next week 


(  Coin toss)


The visual extinction in the Orion Bar nebula is  mag

≃

≥ 10

Random event = an occurence that cannot be 
predicted with certainty


that is, where we don’t know everything with absolute 
precision. This includes deterministic processes with 

limited knowledge of the physics or of the initial 
conditions

≃



Describing uncertainty: 
Random variables and probability distributions
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In this presentation: 2 main types of rv


Random variable (rv) = numerical representation of 
the outcomes of a random event 


that is, a quantity with uncertain value due e.g., to lack 
of observation or to measurement errors

The observations

y

The unknown parameter 

that we want to estimate


θ
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Probability distribution = describes the 

uncertainty on a random variable

Examples:


 Bernoulli distribution


 Poisson distribution

→

→

For a discrete rv 
 : probability mass, 

verifies





And 

π( ⋅ )

∀k ∈ ℕ, π(k) ≥ 0
∞

∑
k=0

π(k) = 1

For a continuous rv 
 : probability density, 

verifies





And 

π( ⋅ )

∀x, π(x) ≥ 0

∫ π(x) dx = 1

Examples:


 Gaussian distribution


 Beta & Gamma distributions

→

→

Describing uncertainty 
Random variables and probability distributions

Random variable (rv) = numerical representation of 
the outcomes of a random event 


that is, a quantity with uncertain value due e.g., to lack 
of observation or to measurement errors

In this presentation: 2 main types of rv


The observations

y

The unknown parameter 

that we want to estimate


θ



Examples of probability distributions
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discrete rv: Poisson distribution


y ∼ Poisson(θ), θ > 0
continuous rv: The normal distribution


y ∼ 𝒩(θ, σ2), θ ∈ ℝ

y y

π(y |θ) π(y |θ)






θ = 1
θ = 4
θ = 10








θ = 0, σ2 = 0.2
θ = 0, σ2 = 1
θ = 0, σ2 = 5
θ = − 2, σ2 = 0.5
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The Bayes theorem

π(θ |y) =
π(θ, y)
π(y)

=
π(y |θ) π(θ)

π(y)
∝ π(y |θ) π(θ)

Joint probability of 

 and θ y Proportional to 


(when  is known)y

Probability of 

when  is known

θ
y
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The Bayes theorem

π(θ |y) =
π(θ, y)
π(y)

=
π(y |θ) π(θ)

π(y)
∝ π(y |θ) π(θ)

Probability of 

when  is known

θ
y

Prior distribution 
What I already know

Bayesian evidence 
Normalisation constant

Posterior distribution 
the target: my updated 

knowledge after including 
my  observation

Likelihood function 
How surprising my observation 


is for this value of 
y

θ
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The Bayes theorem

π(θ |y) =
π(θ, y)
π(y)

=
π(y |θ) π(θ)

π(y)
∝ π(y |θ) π(θ)

Probability of 

when  is known

θ
y

Bayesian evidence 
Normalisation constant

Prior distribution 
What I already know

Posterior distribution 
the target: my updated 

knowledge after including 
my  observation

Likelihood function 
How surprising my observation 


is for this value of 
y

θ

Bayesian inference / 
estimation / reconstruction  

= 

Define the posterior and then 

extract information from it



The 3 steps in Bayesian inference
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1/ Describe the observation model  defines the likelihood function   

 typically in astro:  , with  an astrophysical simulator (RADEX, Meudon PDR, etc.)


2/ Choose a prior distribution   

 typically in astro: uniform on validity intervals, spatial regularisation for images, etc.


3/ Extract estimators from the posterior distribution   


 typically the mean, variance, credibility intervals, or the probability of a random event

→ π(y |θ)

⟹ y |θ ∼ 𝒩 (M(θ), σ2) M

π(θ)

⟹

π(θ |y)

⟹

2 cases for Step 3: is the prior conjugate to the likelihood function? 

No (almost every time)

(As soon as there is a non-linear model involved)

The posterior distribution is from the same 
distribution family as the prior, everything 

comes in closed-form expressions

Yes (simple case)

(There is a list of them)

need to evaluate estimators numerically 

(e.g., with MCMC algo.)



Summary of part 1
Random event = where we don’t know everything with absolute precision

Probability of a random event (in Bayesian paradigm) = degree of belief of occurence


Random variable = a quantity with uncertain value

Probability distribution: describes the uncertainty in a random variable


Bayesian inference: update the uncertainty description on a rv after an observation, 

from a prior one to a posterior one, thanks to Bayes theorem: 

Prior: Initial uncertainty description on 


Likelihood: How surprising observing  is for a given value of 


Posterior: Updated uncertainty description on  

Estimators from the posterior can have closed-form if the prior is conjugate to the likelihood, 

otherwise need to evaluate them numerically

θ
y θ

θ

21

π(θ |y) ∝ π(y |θ) π(θ)



Part 2: Bayesian inference with 
conjugate priors: the ideal case
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Example 1: probability of detecting at least one 
gravitational wave signal within the coming week
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Example 1: probability of detecting at least one 
gravitational wave signal within the coming week
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1/ Describe the observation model

Random event: “did I observe a GW signal on week ?”


Associated random variable: 


Data:  binary observations 


Hypothesis: assume the observations of the  weeks to be independent and identically distributed


Model: each  had the same probability  to detect at least one GW signal   we want to estimate 


 identically distributed: Bernoulli distribution 


 independent: data distribution is 

n

y ∈ {0,1}

N yn ∈ {0,1}

N

yn θ ∈ [0,1] → θ

→ yn |θ ∼ Ber(θ)

→ π ({yn}N
n=1 |θ) =

N

∏
n=1

π (yn |θ)



Example 1: probability of detecting at least one 
gravitational wave signal within the coming week
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1/ Describe the observation model

Random event: “did I observe a GW signal on week ?”


Associated random variable: 


Data:  binary observations 


Hypothesis: assume the observations of the  weeks to be independent and identically distributed


Model: each  had the same probability  to detect at least one GW signal   we want to estimate 


 identically distributed: Bernoulli distribution 


 independent: data distribution is 

n

y ∈ {0,1}

N yn ∈ {0,1}

N

yn θ ∈ [0,1] → θ

→ yn |θ ∼ Ber(θ)

→ π ({yn}N
n=1 |θ) =

N

∏
n=1

π (yn |θ)

2/ Choose the prior: the conjugate prior to a Bernoulli likelihood is the Beta distribution θ ∼ Beta(α, β)

In this case, the posterior is:             θ |{yn}N
n=1 ∼ Beta (α +

N

∑
n=1

yn, β + N −
N

∑
n=1

yn)
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posterior θ |{yn}N
n=1 ∼ Beta (α +

N

∑
n=1

yn, β + N −
N

∑
n=1

yn)

Example 1: probability of detecting at least one 
gravitational wave signal within the coming week

A priori: uniform distribution on  with 


Each new frame = “new week”, 


  small move to the left


  small move to the right


Remarks: 


1/ For every value of , the posterior can describe 
the uncertainty on 


2/ As  increases, the variance decreases and the 
posterior mean converges to the true value

[0,1] α, β = 1

N → N + 1
yn = 0 ⟹

yn = 1 ⟹

N
θ

N
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posterior θ |{yn}N
n=1 ∼ Beta (α +

N

∑
n=1

yn, β + N −
N

∑
n=1

yn)

Example 1: probability of detecting at least one 
gravitational wave signal within the coming week

A priori: uniform distribution on  with 


Each new frame = “new week”, 
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the uncertainty on 


2/ As  increases, the variance decreases and the 
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[0,1] α, β = 1

N → N + 1
yn = 0 ⟹

yn = 1 ⟹

N
θ

N
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posterior θ |{yn}N
n=1 ∼ Beta (α +

N

∑
n=1

yn, β + N −
N

∑
n=1

yn)
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N
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posterior θ |{yn}N
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∑
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N
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Example 1: probability of detecting at least one 
gravitational wave signal within the coming week

posterior θ |{yn}N
n=1 ∼ Beta (α +

N

∑
n=1

yn, β + N −
N

∑
n=1

yn)

Bayesian approach: for any N ≥ 0

𝔼[θ |{yn}] =
α + ∑N

n=1 yn

α + β + N
=

1
N

N

∑
n=1

yn if α = β = 0

Var[θ |{yn}] =
(α + ∑N

n=1 yn) (β + N − ∑N
n=1 yn)

(α + β + N)2(α + β + N+1)

Frequentist approach

Estimator (minimum variance unbiased estim., MLE) 


̂θ N =
1
N

N

∑
n=1

yn

Asymptotic convergence: 


̂θ N → θ* (N → + ∞)

Asymptotic variance of estimator: with Central Limit theorem


 ̂θ N − θ* ∼ 𝒩 (0,
σ2

N ) (N → + ∞) (for some σ > 0)
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Example 2: detection rate of gravitational wave 
signals within a week

1/ Describe the observation model
Random event: “how many GW signals did we observe on week ?”


Associated random variable: integer 


Data:  observations,  


Hypothesis: assume the observations of the  weeks to be independent and identically distributed


Model: each  had the same detection rate    we want to estimate 


 identically distributed: Poisson distribution 


 independent: data distribution is 

n

y ∈ ℕ

N yn ∈ ℕ

N

yn θ > 0 → θ

→ yn |θ ∼ Poisson(θ)

→ π ({yn}N
n=1 |θ) =

N

∏
n=1

π (yn |θ)
2/ Choose the prior: the conjugate prior to a Poisson likelihood is the Gamma distribution θ ∼ Gamma(α, λ)

In this case, the posterior is:             θ |{yn}N
n=1 ∼ Gamma (α +

N

∑
n=1

yn, β + N)
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Example 2: detection rate of gravitational wave 
signals within a week

posterior  θ |{yn}N
n=1 ∼ Gamma (α +

N

∑
n=1

yn, β + N)
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Example 2: detection rate of gravitational wave 
signals within a week

posterior  θ |{yn}N
n=1 ∼ Gamma (α +

N

∑
n=1

yn, β + N)
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Example 2: detection rate of gravitational wave 
signals within a week

posterior  θ |{yn}N
n=1 ∼ Gamma (α +

N

∑
n=1

yn, β + N)
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Example 2: detection rate of gravitational wave 
signals within a week

posterior  θ |{yn}N
n=1 ∼ Gamma (α +

N

∑
n=1

yn, β + N)



Summary parts 2 + Questions
Likelihood: when multiple observations of the same random variable, common to assume


independent: the value of  does not influence the value of 


identically distributed: all taken from the same distribution (eg, Poisson )


Prior: 

to know wether there exist a conjugate priors in your case, check wikipedia’s “conjugate prior” page


As soon as you have non-linearity (eg, an astrophysical simulation ), there is no conjugate prior


 Need to evaluate estimators numerically.


Bayesian approach: you can derive estimators and describe uncertainties no matter the amount of data!

Even in case of degenerecies, even if less observations than unknowns, even with zero observations (from prior)

yn yn+1

(θ)

M
⟹
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Part 3: Bayesian inference without 
conjugate priors: the non-ideal case 

numerical evaluation of estimators with 
sampling algorithms

37
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When there is no conjugate prior
Back to Bayes theorem:  with no parametric description of the posterior. To derive estimators:π(θ |y) ∝ π(y |θ) π(θ)

Option 1: abandon uncertainty quantification 
Estimate the mode of the posterior, called maximum a 

posteriori (MAP), defined as





    


For instance, say: 

 (Gaussian additive likelihood ) 


and  (uniform prior on some set )


̂θMAP(y) = arg max
θ∈Θ

π(θ |y) = arg min
θ∈Θ

[−log π(θ |y)]
= arg min

θ∈Θ
[−log π(y |θ) −log π(θ)]

y |θ ∼ 𝒩 (M(θ), σ2IL)
π(θ) ∝ 1𝒞(θ) 𝒞 ⊂ Θ

̂θMAP(y) = arg min
θ∈𝒞

1
2σ2

L

∑
ℓ=1

(yℓ − Mℓ(θ))2

Scales very well (standard approach in many areas)

but no uncertainty description
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When there is no conjugate prior
Back to Bayes theorem:  with no parametric description of the posterior. To derive estimators:π(θ |y) ∝ π(y |θ) π(θ)

Option 2: use an approximation 
Approximate posterior with simple distribution 


(eg Gaussian) for which extracting estimators is simple


The fit may be complex, especially if θ ∈ ℝD, D ≫ 1

Extracting parameters is easy

Assessing the validity of the uncertainty description 

may be challenging

Option 1: abandon uncertainty quantification 
Estimate the mode of the posterior, called maximum a 

posteriori (MAP), defined as





    


For instance, say: 

 (Gaussian additive likelihood ) 


and  (uniform prior on some set )


̂θMAP(y) = arg max
θ∈Θ

π(θ |y) = arg min
θ∈Θ

[−log π(θ |y)]
= arg min

θ∈Θ
[−log π(y |θ) −log π(θ)]

y |θ ∼ 𝒩 (M(θ), σ2IL)
π(θ) ∝ 1𝒞(θ) 𝒞 ⊂ Θ

̂θMAP(y) = arg min
θ∈𝒞

1
2σ2

L

∑
ℓ=1

(yℓ − Mℓ(θ))2 Active area of research!

To know more on this type of approach: 


see variational methods
Scales very well (standard approach in many areas)


but no uncertainty description
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Option 3: Compute integrals directly 

 




Or  

𝔼 [θ | (yn)N
n=1] = μ = ∫ θ π (θ | (yn)N

n=1)dθ

Var [θ | (yn)N
n=1] = ∫ (θ − μ)2 π (θ | (yn)N

n=1)dθ

𝔼 [f(θ) | (yn)N
n=1] = ∫ f(θ) π (θ | (yn)N

n=1)dθ

Requires to evaluate integrals for each quantity

Unrealistic when  θ ∈ ℝD, D ≫ 1

When there is no conjugate prior
Back to Bayes theorem:  with no parametric description of the posterior. To derive estimators:π(θ |y) ∝ π(y |θ) π(θ)
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Option 4: Monte Carlo estimators (cf risk in ML) 
Generate  samples  and use 

Monte Carlo estimators:








Or   

T θ(t) ∼ π (θ | (yn)N
n=1)

𝔼 [θ | (yn)N
n=1] ≃ μT =

1
T

T

∑
t=1

θ(t)

Var [θ | (yn)N
n=1] ≃

1
T − 1

N

∑
t=1

(θ(t) − μT)2

𝔼 [f(θ) | (yn)N
n=1] ≃

1
T

f (θ(t))

Option 3: Compute integrals directly 

 




Or  

𝔼 [θ | (yn)N
n=1] = μ = ∫ θ π (θ | (yn)N

n=1)dθ

Var [θ | (yn)N
n=1] = ∫ (θ − μ)2 π (θ | (yn)N

n=1)dθ

𝔼 [f(θ) | (yn)N
n=1] = ∫ f(θ) π (θ | (yn)N

n=1)dθ

Guarantee to converge as 

Verifies the Central Limit theorem

Requires numerous evaluations of likelihood

T → ∞Requires to evaluate integrals for each quantity

Unrealistic when  θ ∈ ℝD, D ≫ 1

When there is no conjugate prior
Back to Bayes theorem:  with no parametric description of the posterior. To derive estimators:π(θ |y) ∝ π(y |θ) π(θ)
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How to sample from the posterior distribution?

There are algorithms



43

There are many algorithms!

Normalising flows (NF)
Random Walk Metropolis-Hastings

(Preconditioned) Metropolis-Adjusted Langevin Algorithm

Sequential Monte Carlo (SMC)

Multiple-try Metropolis (MTM)
Gibbs sampling

Rejection samplingNested sampling
EMCEE and 


parallel tempering-EMCEE

Hamiltonian Monte Carlo (HMC)

And No-U-Turn sampler (NUTS)

How to sample from the posterior distribution?
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But one category is most fundamental 
Markov chain Monte Carlo (MCMC)

Nested sampling

Normalising flows (NF)
Random Walk Metropolis-Hastings

(Preconditioned) Metropolis-Adjusted Langevin Algorithm

Hamiltonian Monte Carlo (HMC)

And No-U-Turn sampler (NUTS) Sequential Monte Carlo (SMC)

Multiple-try Metropolis (MTM)

EMCEE and 

parallel tempering-EMCEE

Gibbs sampling

Rejection sampling

How to sample from the posterior distribution?
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A fundamental MCMC algorithm:  
Metropolis-Hastings

The idea 

Generating independent samples from 
the posterior is generally not feasible.


Instead, we resort to an iterative 
algorithm that yields a sequence of 

correlated samples 

Remark on the name “MCMC”: 
Markov chain = the sequence


Monte Carlo = how the sequence is used



46

A fundamental MCMC algorithm:  
Metropolis-Hastings

The algorithm 

At iteration +1:


1) Generate a candidate from a distribution  (generally a Gaussian): 




2) Compute an accept probability 





Note:  often set so that  

3)

t

q
θ(c) ∼ q(θ |θ(t))

α(t)

α(t) = min {1,
π (θ(c) | (yn)N

n=1)
π (θ(t) | (yn)N

n=1)
q(θ(t) |θ(c))
q(θ(c) |θ(t)) }

q q(θ(c) |θ(t)) = q(θ(t) |θ(c))

θ(t+1) = θ(c) with proba α(t) and θ(t) with proba 1 − α(t)

The idea 

Generating independent samples from 
the posterior is generally not feasible.


Instead, we resort to an iterative 
algorithm that yields a sequence of 

correlated samples 

Remark on the name “MCMC”: 
Markov chain = the sequence


Monte Carlo = how the sequence is used

π(θ |y) ∝ π(y |θ) π(θ)
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Illustration: Metropolis-Hastings on the Beta(3,9) 
distribution

Small accept 

probability  α(t)

accept 

probability

  α(t) = 1

Histogram of  samples T = 20,000 θ(t)

Monte Carlo estimators are evaluated from these samples


Eg, 


Similarly for variance, credibility intervals, specific probabilities, etc.

𝔼 [θ | (yn)N
n=1] =

1
T

T

∑
t=1

θ(t)
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When to use Metropolis-Hastings (and not to)

Like standard gradient descent is an entry point to optimization methods, 

MH is an entry point to sampling methods.

If local modes

If  in high dimensions

( )

θ
≥ 10

If  in low dimensions,

posterior unimodal,

no large degeneracy

θ

If degeneracy between 

elements of  in posteriorθ
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Summary of part 3
When no conjugate prior : 3 main types of approaches to evaluate estimators from the posterior

1) Approximate the posterior with simple distribution

2) Evaluate integrals directly

3) Sample from the posterior and use Monte-Carlo estimators


MCMC algo. such as Metropolis-Hastings: generate a candidate, then accept or reject it with a certain probability


Random walk Metropolis-Hastings: 

Other MCMC algorithms use different candidate distributions (some with gradient information)


For simples cases (unimodal, low dimension & no large degeneracy in posterior), Metropolis-Hastings should work

For more complex cases, check other MCMC algorithms (EMCEE, HMC, Gibbs) and software (HerBIE, Beetroots)


Sampling algorithms require many evaluations of the likelihood (which often involves an astrophysical simulator) 


 an astrophysical simulator needs to be very fast, or one can resort to an emulator

θ(c) ∼ 𝒩(θ(t), Σ)

→



Part 4: connecting the dots 

real applications of Bayesian 
inference in ISM studies
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Already many applications
M Noise π(θ)θ ∈ ℝD y π(y |θ) Approach AlgorithmTopic

Panter et al 2003 Star formation 25 Uniform
galaxy spectra 


from SDSS
Gaussian? MCMC RWMH

Gaussian UniformGalaxy SEDs5 GALAXEVAcquaviva et al 2011

(GalMC)

MCMC RWMHStar formation

Bailer-Jones et al 2011 Star properties 2
Hertzsprung–Russell 


Diagram prior 
IntegrationGaussianILIUMPhotometry

Perez-Montero 2014

(Hii-Chi-Mistry)

Integration3 UniformEmission lines GaussianPopstar+CloudyHii regions

Blanc 2015

(IZI)

2 UniformEmission lines Gaussian + mult. Integration

Nested sampling MultiNest
Chevallard 2016


(BEAGLE)
Galaxy SEDs Gaussian Uniform7 “Simple model”Hii regions

Johannesson 2016 Cosmic rays Nested sampling MultiNest30 UniformGaussian + mult.GALPROP

There’s plenty more: CIGALEMC, BOND, HerBIE, NebulaBayes, MULTIGRIS, UCLCHEMCMC 
With applications to star formation history, Hii regions, molecular clouds, PDRs, galactic & extragalactic


Involving a variety of astrophysical simulators (often emulated) such as Cloudy, RADEX, Meudon PDR code 
For a review, see my PhD manuscript, chapter 3

…
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Observation : angle in mas (eg, from Hipparcos or Gaia missions)

Physical parameter : distance to star (in pc)


Likelihood function: 

Astrophysical simulator: 


additive Gaussian noise with known std:      


Prior distribution: how does the density of stars evolve with distance to the sun?


1/ Uniform on validity interval 


2/ Constant star volume density 


3/ Exponentially decreasing star volume density 

y
θ ∈ ℝ

M(θ) = 1/θ
y = M(θ) + ε =

1
θ

+ ε, ε ∼ 𝒩(0, σ2)

π(θ) ∝ {1 if θ ∈ [0, θmax]
0 otherwise

π(θ) = {
3

θ3
max

θ2 if 0 ≤ θ ≤ θmax

0 otherwise

π(θ) = {
3

θ3
max

θ2e−r/L if 0 ≤ θ ≤ θmax

0 otherwise
(L ≥ 0)

Case 1: Estimating distances from parallaxes,  
from Bailer-Jones (2015)
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Case 1: Estimating distances from parallaxes,  
from Bailer-Jones (2015)

uniform on validity interval Constant star volume density
Exponentially decreasing star 

volume density (L = 1000)

One-dimensional simple inference problem: everything can be computed with integrals

For  mas y = 1/100

Green = prior, Red:  y = − 1/100

Prior:

σ/y

1/y 1/y
1/y
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Data drawn from same prior

Case 1: Estimating distances from parallaxes,  
from Bailer-Jones (2015)

uniform on validity interval Constant star volume density
Exponentially decreasing star 

volume density (L = 1000)

Data drawn from constant 

star volume density prior

For mode estimator on multiple cases:


Black = bias 


Blue = variance 

𝔼θ*,y [ ̂θMAP(y) − θ*]
𝔼θ*,y [( ̂θMAP(y) − θ*)

2]
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Case 2: Analysis of prestellar core L1455,  
from Keil et al (2022)

 = 4 parameters: volume density, Temperature, CR ionisation rate, radius of the assumed spherical cloud  


Observations  :  molecular emission lines (single pixel)


Likelihood: 


Astrophysical simulator  = RADEX + UCLCHEM.     fast enough to be used directly in inference process


Observation model: 


Prior: log-uniform on validity intervals


Sampling algorithm: EMCEE

θ Rout

y ∈ ℝL L = 12

M(θ) →
∀ℓ, yℓ = Mℓ(θ) + εℓ, εℓ ∼ 𝒩(0,σ2

ℓ)
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Case 2: Analysis of prestellar core L1455,  
from Keil et al (2022)

Posterior samples Model check: do the reconstruction 

reproduce the observations?
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Case 3: Analysing maps of physical parameters 
with Beetroots: application to OMC-1, from Palud et al (2025)

Observation  : multispectral image

( )


Physical parameter maps : 

Scaling factor   (includes beam dilution factor)

Thermal pressure  

Intensity of UV radiative field  

Visual extinction 


Likelihood: 
Astrophysical model: emulator of the Meudon 
PDR Code (built with a neural network)


Observation model: 


Prior:  
validity intervals + spatial regularization 

y ∈ ℝN×L

N ≃ 2400, L = 5

θ ∈ ℝN×D

κ
Pth

G0
Atot

V

M(θ) =

∀n, ℓ, ynℓ = ε(m)
nℓ Mℓ(θn) + ε(a)

nℓ
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Case 3: Analysing maps of physical parameters 
with Beetroots: application to OMC-1, from Palud et al (2025)

Observation  : multispectral image

( )


Physical parameter maps : 

Scaling factor   (includes beam dilution factor)

Thermal pressure  

Intensity of UV radiative field  

Visual extinction 


Likelihood: 
Astrophysical model: emulator of the Meudon 
PDR Code (built with a neural network)


Observation model: 


Prior:  
validity intervals + spatial regularization 

y ∈ ℝN×L

N ≃ 2400, L = 5

θ ∈ ℝN×D

κ
Pth

G0
Atot

V

M(θ) =

∀n, ℓ, ynℓ = ε(m)
nℓ Mℓ(θn) + ε(a)

nℓ
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Case 3: Analysing maps of physical parameters 
with Beetroots: application to OMC-1, from Palud et al (2025)

Good estimator

With uncertainty 

description
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Exploring results for a single pixel

Case 3: Analysing maps of physical parameters 
with Beetroots: application to OMC-1, from Palud et al (2025)

Random event: The visual extinction  in the Orion 

Bar nebula is  mag


After sampling, the probability of this random event 
(given the many assumptions on observation model, 
choice of astrophysical simulator, prior distribution) is 





(Here, seems very close to 1)

AV

≥ 10

≃
# samples such that AV ≥ 10

total number of samples
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Posterior predictive checks: Can I reproduce my observations from the Meudon PDR 
code, my spatial regularisation prior and observation model ?

Case 3: Analysing maps of physical parameters 
with Beetroots: application to OMC-1, from Palud et al (2025)

For more information on this topic: 


For a review in ISM: see chapter 3, section 3.3


For this specific method: see chapter 5, section 5.3
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Case 3: Analysing maps of physical parameters 
with Beetroots: application to OMC-1, from Palud et al (2025)

Compatibility with independent estimations, from other tracers
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Case 3: Analysing maps of physical parameters 
with Beetroots: application to OMC-1, from Palud et al (2025)

Checking astrophysical relationships between variables



Summary of Part 4 + Conclusion
Goals: At the end of this class, you should

• Know what the prior, likelihood and posterior are


• Be able to formalise a Bayesian inference task, by 
identifying the main elements


• Implement the Metropolis-Hastings algorithm on a 
simple case, and analyse the inference results


• Know some tools to go further and solve more 
complex problems 

In the Hands-on session:

 You will transform the description of a use case 

to a likelihood function and prior distribution

→

 You will implement MH, visualise the results and 

evaluate Monte-Carlo estimators

→

 Check out this tutorial on Beetroots

https://github.com/pierrePalud/beetroots-tuto/tree/main 

→

Thanks! 
Check out my webpage : https://pierrepalud.github.io/

https://github.com/pierrePalud/beetroots-tuto/tree/main
https://pierrepalud.github.io/

