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1 Introduction

During this session, we put into action the concepts presented during the course with experiments
simulated with Python and synthetic data. Don’t hesitate to ask any question. To learn more about
this subject, you may refer to the following articles [1, 2, 3] published in 2024.

2 Entropy estimation

Let’s consider a sample of observations x1, x2, ..., xN , assumed i.i.d.

1/ First run the program main_entropy to recover the examples from the course presentation for
“normal”, “mixture” and “VonMises” distributions. For each chosen density, a figure pops-up and a pdf
file is generated in the current directory.

2/ For the Gaussian mixture, when the difference between both Gaussian means increases, what
happens to the standard deviation? What happens to the entropy? Interpret this result.

3/ Check the option so that the histogram of the generated sample is plotted. Find the sample length
(N) and the number of bins (K) that lead to “nice” approximations of the probability density functions.

4/ Check the option so that the program performs a Monte Carlo simulation that analyze the ac-
curacy of the following two techniques that estimate the differential entropy:

ĥ1(X) = − 1

N

∑
n

log pX(xn) (1)

where pX is the probability density function (pdf) of X. The second estimator is

ĥ2(X) = −
∑
k

Pk log2 Pk + log2∆ (2)

where Pk is the histogram height at bin k and ∆ is the bin size. 1

5/ Check the influence of the sample size (N), of the number of bins (K) on the entropy estima-
tion. Which estimator do you prefer? Justify your answer.

3 Conditional entropy and mutual information

3.1 Measurement model

Let’s consider a physical parameter (e.g. logN(H2)) assumed to be distributed along a uniform distri-
bution X ∼ U[20, 24]. Assume one observes an integrated intensity Y related to X by

Y = m(X) +N (3)

where N ∼ N (0, σ2) is an additive white gaussian noise (AWGN) and

m(X) =

{
A.asinh

(
X−C
B

)
if X > C

0 Otherwise
(4)

where A, B and C are assumed to be known. In particular, we assume in the following that C depends
on the considered line.

1Remember that Pk ≃ ∆ pX(ak) where ak is the bin location and
∑

k Pk = 1.
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3.2 Line selection

1/ By running the program main_condional_entropy_asinh, you should recover the plots from the
course: the 2D histogram of the pair X,Y , but also some density of X|Y = y for some particular
values of y.

2/ Note that to save the memory space, the 2D histogram is computed within a loop, which means
that several 2D histograms are actually generated and summed. Check the influence of the number
of histograms on the estimated distributions by changing nb_histo. Identify the tradeoff between
accuracy and the cpu time of your computer.

3/ Note that in this program, the entropy is estimated based on Eq. (2). Why don’t we use the
estimator from Eq. (1)?

More precisely, for each bin k (of X) and l (of Y ), let’s note P̂kl the heigh of the observed 2D-histogram.
The program computes the following estimations

P̂k =
∑

l P̂kl the distribution of X

P̂l =
∑

k P̂kl the distribution of Y

Q̂k|l = P̂kl/P̂l the distribution of X conditioned by the knowledge of Y

ĥ2(X|Y = bl) = −
∑

k Q̂k|l log2 Q̂k|l + log2∆ the entropy of X|Y = bl

where .̂ emphasize that these are all estimations. Furthermore, h(X|Y ) is estimated based on

ĥ2(X|Y ) =
∑
l

ĥ2(X|Y = bl) P̂l (5)

whereas the mutual information is estimated based on

Î(X;Y ) =
∑
k,l

P̂kl log2
P̂kl

P̂kP̂l

4/ Equation 5 is a complex way estimate the conditional entropy. Can you propose another solution
to estimate the conditional entropy based on the estimation of the mutual information? What is the
physical interpretation of this relation?

5/ Assume that the value of C (see Eq. (4)) depends on the line observed (e.g. 12CO, 13CO, C18O,
...). Which line (i.e. which value of C) provides the most of information about X? You may simply
modify line 16 of the provided program to run several values of C.

6/ Does this “optimal” value of C depends on other parameters? For example, what happens when A
does from 3 to 1? Interpret this result.

7/ How would you proceed to adapt this methodology to another physical model (e.g. Radex)? What
challenges will occur during the implementation of this technique?

8/ Assume one observed a map of lines (e.g. in Orion B) and that in the same area, one also ob-
served with a spatial telescope (e.g. Herschel) a map of N(H2). What can be done with these data?
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4 Estimation performance analysis with the Cramér-Rao lower bound

Let’s consider the same model than before, but we now use “estimation theory” notations:

X = m(θ) +N (6)

where X is the measurement, N ∼ N (0, σ2) is a AWGN and

m(θ) =

{
A.asinh

(
θ−C
B

)
if θ > C

0 otherwise
(7)

where A, B and C are assumed to be known and the parameter to estimate is θ.

For an additive gaussian noise as in Eq. (6), the probability density function of X is

PX(x) =
1√
2πσ

exp− [x−m(θ)]2

2σ2

and it can be shown that the calculus of the Fisher information leads to

F (θ) =

(
m′(θ)

σ

)2

where m′ is the derivative of m

Thus, the Cramér-Rao lower bound (CRB) is

B(θ) =
(

σ

m′(θ)

)2

Remember that, for any unbiased estimator θ̂,

Var(θ̂) ≥ B(θ)

which means that the CRB provides a precision of reference, independant of the choice of the estimator.
With Eq. (7), it is straightforward to show that

m′(θ) =
A

B

√
1 +

(
θ−C
B

)2
Thus, the precision of reference is

B(θ) = σ2B
2 + (θ − C)2

A2
(8)

1/ The program main_CRB_asinh simulates P realisations (θ̂(p))p=1,...,P of an estimator of θ defined by
θ̂(x) = m+B sinh(x/A). Based on the shown histogram, comment on the performance of this estimator.

2/ By changing line 23 of the program, one can check the influence of θ on the S/N (m(θ)
σ ), on

the CRB (B(θ)), but also on the bias and mean square error defined by

b̂ias(θ, θ̂) =
1

P

P∑
p=1

θ̂(p) − θ M̂SE(θ, θ̂) =
1

P

P∑
p=1

(θ̂(p) − θ)2

How do you explain that the S/N and the MSE both increase with θ? What happens when you increase
the value of P from 102 to 104? Explain this phenomenon.

3/ Can the CRB help to select the “best” line (i.e. the “best” value of C)? If so, how would you proceed
to estimate it? Will it necessarily provide the same result than the mutual information?

4/ How would you proceed to adapt this methodology to another physical model (e.g. Radex)?
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5 Next steps

Assume now that in Eq. (7), A is unknown, but we have some a priori on A characterized by a prior
distribution A ∼ N (µA, σ

2
A).

1/ Can we still use the mutual information technique to select the best line? If yes, how would
you proceed?

2/ Can we still use the CRB to select the best line? If yes, how would you proceed?

3/ What if B is unknown, but we have some a priori on B characterized by a prior distribution
B ∼ N (µB, σ

2
B).

4/ Conclude on this hands on.
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